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SUMMARY

All data assimilation systems are affected by biases, caused by problems with the data, by approximations in
the observation operators used to simulate the data, by limitations of the assimilating model, or by the assimilation
methodology itself. A clear symptom of bias in the assimilation is the presence of systematic features in the
analysis increments, such as large persistent mean values or regularly recurring spatial structures. Bias can also be
detected by monitoring statistics of observed-minus-background residuals for different instruments. Bias-aware
assimilation methods are designed to estimate and correct systematic errors jointly with the model state variables.
Such methods require attribution of a bias to a particular source, and its characterization in terms of some well-
defined set of parameters. They can be formulated either in a variational or sequential estimation framework by
augmenting the system state with the bias parameters.

KEYWORDS: Adaptive bias correction Bias-aware Bias-blind Kalman filter Model bias Observa-
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1. INTRODUCTION

Textbook data assimilation theory is primarily concerned with the problem of
optimally combining model predictions with observations in the presence of random,
zero-mean errors. In reality, errors in models and data are often systematic rather than
random. Model errors caused by inaccurate surface forcing, poor resolution of the
boundary layer, simplified representations of moist physics and clouds, and various
other imperfections, are not well represented by random noise. Satellite observations
contain instrument-dependent biases that are often larger than the amplitude of the
useful signal, and approximations in radiative transfer calculations can cause complex,
state-dependent systematic errors in the assimilation. Many conventional observations
are biased as well, e.g. daytime high-altitude radiosonde temperatures due to solar
radiation effects, measurements taken close to the ground due to inaccurate station
elevation information and errors in the model’s surface representation, and cloud-drift-
derived wind observations due to errors in cloud-top height assignment.

Considerable efforts are made to remove biases from models and observations,
particularly at operational centres, yet their effect on the quality of assimilated data
products remains significant. In the context of numerical weather prediction, the pres-
ence of residual biases means that the available data are not used optimally, and in
some cases cannot be used at all. In the realm of climate research based on re-analysed
datasets, it can be extremely difficult to separate real signals and trends from spurious
ones caused by biases in models and data. Figure 1 provides a schematic illustration
of this problem. If unbiased observations are assimilated using a biased model, then
the model drift causes a positive bias in the assimilation. The size of the bias depends
on the accuracy as well as the frequency of the observations. As a result, a change in
characteristics of the observing system, even if all observations are unbiased, leads to
what might be perceived as an apparent change in climate. See Santer et al. (2004)
for an interesting account of dealing with these types of complications in attempting
to isolate real climate signals using state-of-the-art assimilated datasets and statistical
analysis techniques.
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Figure 1. Assimilation of unbiased observations in a biased model, and the effect of observing frequency on the
apparent climate. The dashed curve represents the true state evolution, observations are indicated by the dots, and

the solid curve is the assimilation.

We consider the term bias to broadly include any type of error that is systematic
rather than random. In statistics, bias is a property of an estimator which, on average,
under- or overestimates some quantity. For example, a model which is consistently cold
at some location is biased. The bias may be spatially variable, seasonal, diurnal, or
even situation-dependent. If we allow some flexibility with respect to the notion of a
model (or an observing system) as an estimator, and with the operative definition of
averaging, then any component of error that is systematic in some well-defined sense
can be considered a bias. This is consistent with the usage of human forecasters, who
describe, for example, the tendency of a particular model to generate excessive surface
lows in certain recurring situations as a bias.

Data assimilation systems that are designed to correct random, zero-mean errors in
a model-generated background estimate based on unbiased observations might be called
bias-blind. Routine monitoring of observed-minus-background residuals (also known
as innovations, background residuals, or background departures) in bias-blind systems
invariably shows evidence of biases in either the model, the observations, or both. Simi-
larly, the presence of persistent or repetitive patterns in the analysis increments produced
during the assimilation indicates that there are systematic discrepancies between model
and observations, and possibly among different components of the observing system
as well. To effectively remove those discrepancies during the data assimilation process
requires bias-aware assimilation methods, which incorporate specific assumptions about
the source and nature of (some of) the biases in the system, and are specifically designed
to estimate and correct those biases.

2. BIAS-BLIND DATA ASSIMILATION

Data assimilation in practice is essentially a sequential procedure, in which a model
integration is periodically adjusted on the basis of actual observations confined to a finite
time window. While the length of the window and many other specifics may vary, most
assimilation methods are similar in that observations, y, are combined with a model-
generated state estimate, xb (the background), by minimizing a functional

J (x) = (xb − x)TB−1(xb − x) + {y − h(x)}TR−1{y − h(x)} (1)

with respect to the model state x. The function h( . ) denotes a set of observation
operators used to express the relationship between model state and observations; this
may involve integration of the model in a four-dimensional variational assimilation (4D-
Var) system. The matrices B and R represent covariance operators usually associated
with background and observation errors, respectively; the latter includes the effects
of approximations in the observation operators. The minimizing solution x = xa (the
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analysis) satisfies the nonlinear equation

xa − xb = B
(

∂h
∂x

∣∣∣∣
x=xa

)T

R−1{y − h(xa)} (2)

obtained by setting the gradient of J (x) to zero. An important implication of (2)
is that all possible adjustments to the background are confined to the range of B.
This explains why the specification of background-error covariances is so important
to the performance of a data assimilation system and its ability to absorb and retain
observational information. Interestingly, this statement does not necessarily depend on
whether B actually provides an accurate representation of background-error covariances.

Methods based on (1) are bias-blind, since they are designed to correct random
errors only. We can see this most clearly by linearizing (2) to obtain the familiar analysis
equation

dx = Kdy, (3)

where dx = xa − xb denotes the analysis increment and dy = y − h(xb) is the vector
of observed-minus-background residuals, and the gain operator K (or analysis weight
matrix) is given by

K = BHT(HBHT + R)−1, H = ∂h
∂x

∣∣∣∣
x=xb

. (4)

In terms of the analysis, background, and observation errors defined by

ea = xa − x, eb = xb − x, eo = y − h(x), (5)

with x the unknown true state (defined in model space), (3) implies

ea ≈ Keo + (I − KH)eb. (6)

To first order, therefore, any biases in the model background or in the observations are
linearly transferred to the analysis:

〈ea〉 ≈ 〈Keo〉 + 〈(I − KH)eb〉 (7)

where 〈 . 〉 represents linear averaging over a sufficiently large ensemble. If either the
background or the observations are biased, then the analysis is biased regardless of the
specification of the gain operator K. In practice one can adjust K to reduce the bias
in the analysis, but this will introduce additional noise as a result. If estimates of the
biases are available, Dee and da Silva (1998, section 2) show how to modify K in order
to minimize the total (root-mean-square) analysis error. However, the resulting r.m.s.-
optimal analyses are still biased, and noisier than the optimal analysis in a system which
is free of bias (see Fig. 2). It is not possible to produce an unbiased analysis from a
biased background and/or biased observations with a bias-blind analysis method.

(a) Bias detection using analysis increments
How prevalent are biases in state-of-the-art assimilation systems? The easiest way

to detect the presence of bias is to see whether behaviour of the type illustrated in Fig. 1
occurs, i.e. whether the analysis has a tendency to make systematic corrections to the
model background. In the ideal (bias-free) situation we should expect mean analysis
increments close to zero:

〈dx〉 ≈ 〈Keo〉 − 〈KHeb〉 ≈ 0. (8)
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Figure 2. Analysis error as a function of the gain K, given a single unbiased observation with error standard
deviation σ and a background estimate with bias = σ and error standard deviation σ . The dotted horizontal

indicates the minimum analysis error obtainable when bias = 0.

Non-zero mean increments are significant when they are not small compared to the size
of a typical increment at any given time. A typical increment depends primarily on the
configuration of the observing system, but also on the quality of the background. In
fact, (3)–(5) imply that

〈dxdxT〉 ≈ KHB, (9)

provided background and observation-error covariance specifications are reasonably
accurate.

Figure 3 shows the zonal monthly mean of temperature increments for August
2002 produced in the ERA-40 re-analysis. There is clear evidence of biases in the
system. The most conspicuous features are the mean stratospheric increments exceed-
ing 1 K in an alternating positive-negative pattern, and similar oscillating increments
over the southern high latitudes descending into the troposphere. Maps at stratospheric
levels of monthly mean increments at different times of day (not shown here) indi-
cate persistent large-scale biases of opposite sign in different geographic areas, that
roughly coincide with the locations of the available satellites. Overall, the mean incre-
ments represent a large fraction of typical increments, even in the middle troposphere
where the model is relatively skillful and observations are abundant. Similar plots for
humidity, ozone, and other variables throughout the ERA-40 period are publicly acces-
sible at the European Centre for Medium-Range Weather Forecasts (ECMWF) web site
(http://www.ecmwf.int).

While the mean analysis increments in ERA-40 clearly indicate the presence of
substantial biases, additional information is needed to identify their sources. The main
stratospheric biases in the assimilation are likely caused by model errors, which are
known to be large and systematic in the stratosphere. The problem is complicated by the
fact that the available observations are biased there as well. The main source of data in
the middle and upper stratosphere used in ERA-40 consists of radiances obtained from
TOVS/ATOVS∗ instruments carried on successive generations of NOAA† polar-orbiting
satellites (Hernandez et al. 2004). These have been corrected for biases related to scan
angle and air mass using off-line tuning procedures described in Harris and Kelly (2001).
The air-mass-dependent bias correction is primarily designed to account for inaccuracies

∗ (Advanced) TIROS Operational Vertical Sounder.
† US National Oceanic and Atmospheric Administration.
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Figure 3. Zonal mean of time-averaged temperature increments (contours with colour shading, K) produced in
the ERA-40 re-analysis for August 2002. Red dashed contours indicate mean analysed temperatures (◦C). Grey

dotted contours denote the model levels. Graphic provided by courtesy of the ECMWF.

in the fast radiative transfer calculations that are used in the assimilation. For lack of a
true reference, this correction relies on a small set of predictors that are computed from
the model background. It is possible, therefore, that model biases are supported or even
reinforced by the radiance assimilation in areas where few other observations exist.

The bias problems discussed here are by no means unique to ERA-40 but appear
to exist in many global atmospheric data assimilation systems. Langland (2005, per-
sonal communication) has noted striking similarities in mean temperature analysis in-
crements produced by the Naval Research Laboratory’s Atmospheric Variational Data
Assimilation System (NAVDAS). Polavarapu et al. (2005) discuss identical problems
with the assimilation of stratospheric data in the Canadian Middle Atmosphere Model
(CMAM), and suggest that non-physical features of the increments are closely related to



3328 D. P. DEE

the specification of background-error covariances in their system. This is a consequence
of the fact that the background-covariance operator controls the structures of analysis
increments, cf. (2). In particular, the vertical structure of the increments in the southern
hemisphere, so evident in Fig. 3, may simply reflect extrapolation by the analysis of
large corrections made near the stratopause (McNally 2004). Most data assimilation
systems are not equipped to handle large, systematic corrections; they were designed to
make small adjustments to the background fields that are consistent with the presumed
multivariate and spatial structures of random errors.

(b) Bias detection using background residuals
Statistics of observed-minus-background residuals provide a different, sometimes

more informative, view on systematic errors in model or observations. Operational nu-
merical weather-prediction centres routinely monitor time- and space-averaged back-
ground residuals associated with different components of the observing system, provid-
ing a wealth of information on the quality of the input data as well as on the performance
of the assimilation system. In general, small r.m.s. residuals imply that the system is able
to accurately predict future observations. Non-zero mean residuals, however, indicate
the presence of biases in the observations and/or their model-predicted equivalents, since

〈dy〉 ≈ 〈eo〉 − 〈Heb〉. (10)

There is no general method for identifying bias sources based on (10) alone. However,
an observed change in the residual mean for a particular component of the observing
system may indicate, for example, a developing bias in that component, or even the
impending failure of an instrument. Early detection of such problems is, in fact, one
of the main functions of an operational monitoring system. More generally, combined
information about residual statistics for different (perhaps overlapping) components of
the observing system can lead to useful insights into sources of bias, possibly in the
model, which can then be further explored.

(i) Weather time-scales. While basic statistics such as the time-mean and standard
deviation are useful for detecting persistent errors, additional information can be
gleaned from time series of observed-minus-background residuals by considering their
spectral properties. The well-known innovation property (Anderson and Moore 1979,
theorem 3.1; Daley 1992) states that the background residuals are white in time (not
serially correlated) if the analysis is optimal. Dee and Todling (2000) computed normal-
ized power spectra of radiosonde humidity residuals obtained from the Goddard Earth
Observing System (GEOS) data assimilation system to show clear evidence of subop-
timality and the presence of systematic errors on time-scales on the order of 5–10 days
in the assimilation. The normalized spectrum for an individual station can be computed
using an algorithm designed for unevenly spaced data due to Lomb (1976), as described
in section 13.8 of Press et al. (1992). To illustrate, Fig. 4 shows spectra of radiosonde
temperature observed-minus-background residuals obtained from the National Centers
for Environmental Prediction (NCEP) global assimilation system, averaged over all
northern hemisphere stations, plotted at various pressure levels as a function of the wave
period in days. Due to the normalization the curves should be flat for white residuals,
even when the time-mean and standard deviations vary by station. There is excessive
power in periods longer than 10 days, as well as a strong peak in the diurnal cycle. Near
the surface, this peak may reflect systematic underestimation by the model of the mean
diurnal temperature variation; at higher levels it is probably caused by remaining solar
radiation bias in the radiosonde temperature observations.
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Figure 4. Normalized power spectra of NCEP temperature observed-minus-background residuals for January–
February 2005, averaged over all northern hemisphere radiosonde stations with at least 50 reports during the
period. Printed in each panel are: pressure level, number of stations used, number of observations used, mean of

the residuals, and standard deviation of the residuals.

(ii) Seasonal time-scales. McNally (2004) provides an interesting and convincing
example of stratospheric model bias detection, primarily based on a study of residual
statistics obtained from Advanced Microwave Sounding Unit A (AMSU-A) radiance
data. The time evolution of the mean background residuals for AMSU-A channel 14
brightness temperatures, which are mainly sensitive to upper-stratospheric temperatures,
was shown to exhibit a large seasonal variation with an average amplitude of about 3 K,
and with opposite phases in the two hemispheres. These characteristics strongly point
to the model as the dominant source of bias, and this was confirmed by careful cross-
comparison with independent research data. McNally (2004) also discusses other, more
subtle, aspects of the bias problem related to radiative transfer calculations, as well as
the spurious vertical structures in the temperature increments that are imposed by the
background-error covariance formulation.

(iii) Climate time-scales. Haimberger (2005) describes an automated scheme for a
posteriori elimination of artificial breaks or jumps in historical radiosonde station data.
These breaks in the time series are often caused by equipment changes at individual sta-
tions, which have not always been properly documented. The main reference for break
detection used in this study is the time sequence of globally averaged background tem-
perature fields produced in the ERA-40 re-analysis. A major challenge in this approach
is that the background estimates themselves contain spurious trends, which must be
accounted for before corrections can be made to the radiosonde data. Haimberger’s
Fig. 19, reproduced here as Fig. 5, illustrates this problem quite well. Three bias-related
problems are clearly noticeable in the uncorrected residuals. First, the jump of about
1 K during 1975 and most of 1976 was caused by an erroneous bias correction of the
NOAA-4 radiances. Second, the increase in the mean residuals between 1985 and 1990
is due to the gradual replacement of radiosonde equipment in Australia and the Pacific.
Finally, the trend in the 1990s has been identified with warming due to excessive tropical
precipitation, associated with the assimilation of increasing amounts of humidity data
during this period (Andersson et al. 2005). Haimberger’s correction scheme incorporates
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Figure 5. Uncorrected background-minus-observed temperatures at 50 hPa, averaged over all radiosonde sta-
tions south of 25◦N (solid black), and linear trend in the mean background temperatures during 1989–2001
(dashed grey). The solid grey curve is proportional to the probability of a break in the time series, based on a

variant of the Standard Normal Homogeneity Test; see Haimberger (2005) for details.
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Figure 6. Assimilation with bias attribution (a) to the model, (b) to the observations, and (c) to neither the model
nor the observations.

a method for removing biases from the background reference, which essentially relies
on the assumption that these biases are global, as opposed to station biases which are
local. Haimberger (2005) provides highly recommended reading for anyone interested
in the difficulties, subtleties, and practical aspects of bias correction in data assimilation.

3. BIAS-AWARE DATA ASSIMILATION

Some data assimilation methods are designed to estimate parameters that represent
systematic errors in the system, simultaneously with the model state variables them-
selves. In the following sections we will describe several examples of such bias-aware
methods, but we first raise some general issues that pertain to all of them.

By design, bias-aware assimilation requires assumptions about the nature of the
biases: first, the attribution of a bias to a particular source, and second, a characterization
of the bias in terms of some well-defined set of parameters. The three diagrams in Fig. 6
roughly indicate what happens to the assimilation when a bias is attributed to the model,
to the observations, or to neither, as in a bias-blind assimilation. The need to attribute
errors to their proper sources is obvious in any data assimilation system, but becomes
especially critical when it involves bias correction. This is because a wrong attribution
will force the assimilation to be consistent with a biased source. If the source of a known
bias is uncertain, bias-blind assimilation may be the safest option.

In general, bias estimation requires the formulation of a model for the bias, as well
as a reference dataset from which to estimate the parameters of this bias model. Both
requirements involve difficult choices. For example, biases associated with radiative
transfer errors are often modelled with flow-dependent predictors (Eyre 1992; Derber
and Wu 1998; Harris and Kelly 2001); the bias parameters to be estimated in this case
are the predictor coefficients. The choice of predictors for a particular sensor, while
clearly important, is far from obvious. Bias modelling for satellite radiances is still an
active area of research; alternative models involving physical parameters of the radiative
transfer have been proposed by Joiner et al. (1998) and by Watts and McNally (2004).
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For biases associated with systematic model errors, such as the stratospheric biases
discussed earlier, it is even more difficult to develop useful representations of the biases
themselves or of their generation mechanisms. One possibility is to directly model the
bias in the background fields by assuming persistence or some other type of prescribed
time behaviour (Dee and da Silva 1998; Dee and Todling 2000; Radakovich et al. 2001;
Lamarque et al. 2004; Chepurin et al. 2005). The advantage of this approach is that
background errors are observable (cf. (10)), which makes it relatively straightforward
to formulate a consistent bias-estimation scheme. Nevertheless, it would be preferable
to estimate tendency errors that lead to the bias in the background fields, if this could
be used to suppress bias generation during the integration of the model (Derber 1989;
Radakovich et al. 2001; Bell et al. 2004; Balmaseda et al. 2005). Much more research is
needed in this area, including work in the directions set out by Tsyroulnikov (2005), who
has begun to address the problem of developing advanced stochastic representations of
model errors that are consistent with the spatial and temporal structures of the forecast
errors they generate.

Finally, a true (unbiased) reference is needed to estimate the parameters of a given
bias model. In practice it is necessary to resort to surrogates such as independent obser-
vations, model background fields, or analyses. For example, radiance bias parameters
have been estimated from observed-minus-background residuals collected over time
(Harris and Kelly 2001), but also from collocated radiosonde data in a sequential up-
dating procedure (Joiner and Rokke 2000). Apart from sampling issues that must be
considered in any statistical estimation scheme, there is a risk that bias in the reference
data ultimately gets attributed to the wrong source. If bias parameters are estimated
jointly with the model state in a bias-aware assimilation scheme, then the final state
estimate (i.e. the analysis) serves as the implicit reference for the bias estimation. This
means that all available information is assimilated in a consistent manner, but it does not
guarantee that the biases have been attributed correctly.

(a) Variational analysis methods
It is conceptually straightforward to estimate bias parameters along with the model

state in a variational analysis, as long as the relationships among parameters and state
components are well-defined. The general idea is to introduce an augmented control
vector

zT = [xT βT] (11)

that includes the parameters β as well as the model state x. The analysis is then obtained
by minimizing

J (z) = (zb − z)TZ−1(zb − z) + {y − h̃(z)}TR−1{y − h̃(z)} (12)

with respect to the new control vector z, whose background estimate zb must now
include a prior estimate βb of the bias parameters. We use the notation h̃ to indicate that
the observation operator may depend on (some of) the newly introduced parameters.
The matrix Z represents an augmented background-error covariance operator, which, in
principle, includes cross-covariances among parameters and state vector components.
Implementation of this approach in practice requires a workable approximation for these
covariances, as well as an efficient minimization algorithm.

(i) Variational bias correction of radiance data. Variational bias correction of satellite
radiances was first implemented at NCEP in their spectral statistical interpolation (SSI)
analysis system (Derber and Wu 1998), and more recently at ECMWF (Dee 2004).
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Both implementations rely on linear predictor models for the air-mass-dependent com-
ponent of the bias, although the choice of predictors differs in the two systems. In (12)
we therefore have

h̃(z) = h(x) + b(β, x), b(β, x) =
Np∑
i=0

βipi(x), (13)

where b is the bias model and the pi are the predictors. Typically p0 is constant while
the remaining predictors are functionals of the state at the observation locations, such as
tropospheric thickness, integrated lapse rate, etc. Only a few predictors are used in order
not to over-fit the biases, but the predictor coefficients for each channel and each sensor
are allowed to be different. The total number of radiance bias parameters included in the
system is therefore roughly N = Np × Ns × Nc, where Np is the number of predictors
used, Ns is the number of sensors being assimilated, and Nc is the number of channels
per sensor. The dimension N of the parameter vector is very small compared to the
dimension of the state vector x, so it should not be costly to perform the bias correction
during the minimization.

The background estimate βb for the predictor coefficients is usually just the latest
estimate obtained from the previous analysis. The errors in this estimate are generally
correlated with the state estimation errors, because they depend on the same data. For
lack of quantifiable information about these correlations, however, the background-error
covariances in (12) are specified as

Z =
[

Bx 0
0 Bβ

]
, (14)

with Bx the (state) background-error covariances, and Bβ the parameter background-
error covariances. Written in terms of x and β, (12) then becomes

J (x, β) = (xb − x)TB−1
x (xb − x)

+ (βb − β)TB−1
β (βb − β)

+ {y − h(x) − b(x, β)}TR−1{y − h(x) − b(x, β)}.
(15)

The first term is the usual background term for the state vector (cf. (1)). The second term
represents the background constraint on the bias parameters. It controls the adaptivity of
the estimates; a strong constraint means that the parameter updates in each analysis cycle
are small, while a weak constraint (or no constraint at all) implies that the parameter
estimates respond quickly to the latest observations. The third term is the bias-adjusted
observation term.

Efficient minimization of the functional (15) requires the ability to evaluate its
gradient with respect to all control variables, including the bias parameters. This means
that the adjoint of the bias model must be available, which is a simple matter for the
linear additive bias model in (13), but may be more complicated when bias parameters
are deeply embedded in the radiative transfer calculations. In addition, the inclusion of
bias parameters in the minimization severely affects the conditioning of the problem;
see Dee (2004) for further discussion of this issue.

An important practical advantage of an adaptive bias correction system for satellite
radiances is that it reduces the need for manual tuning procedures, which are tedious
and prone to error, especially in view of the large number and variety of sensors being
assimilated (Thépaut 2003). The system will automatically adjust the bias for a given
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Figure 7. Adaptive bias correction for MSU channel 3, in response to a sudden change in the instrument
calibration. (a) shows the evolution of the mean and standard deviation (K) of observed-minus-background (red)
and observed-minus-analysis (blue) residuals, as well as the r.m.s. of the applied bias correction (black). Statistics
are computed for data points with latitudes between 20◦S and 20◦N, from 1 September to 31 December 1986.

(b) shows the data count (green) and its 4-value moving average (black).

channel in order to maintain consistency with all available information. Adaptive bias
correction will compensate for slow drift that may occur in some channels, but can
also handle sudden changes due to unexpected events. This is illustrated in Fig. 7,
which shows the evolution of the bias corrections, residual statistics, and data counts for
channel 3 brightness temperatures of the Microwave Sounding Unit (MSU) on NOAA-
9 over a four-month period. The bias in this channel changed abruptly on 1 November
1986 and again on 4 December 1986, possibly due to solar flares. The initial response of
the assimilation system is to reject most of the observations in the quality-control step.
However, with the remaining data the analysis immediately begins to adjust the bias
estimates, and then more data are gradually returned to the system over the next few
days. It can be seen from the plot that the noise in the residuals does not change during
this period, which suggests that there may still be useful information in this channel.

(ii) Variational correction of systematic model errors. There is a large body of work
concerning variational formulations of the data assimilation problem that can account
for model errors, starting with Sasaki (1970). The standard formulation, which assumes
that model errors are random, additive, and white (e.g. Ménard and Daley 1996), is not
specifically designed to correct systematic model errors. However it is conceivable that
the additional degrees of freedom introduced into the system could effectively force
the model to an unbiased state. In the Variational Continuous Assimilation technique
proposed by Derber (1989), the control variables used for the minimization represent
model tendencies rather than the model state itself. Zupanski (1997) developed a
regional weak-constraint 4D-Var system in which the control variable includes both
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the model state at initial time and serially correlated model error represented by a
first-order Markov process. Griffith and Nichols (2000) similarly proposed schemes
for correcting model errors in a variational framework, including persistent tendency
errors. Trémolet (2003) has recently developed a weak-constraint formulation of the
ECMWF operational assimilation system, and preliminary experiments have shown
that this system can be effective in reducing the impact of stratospheric temperature
model biases. At the Naval Research Laboratory, an observation-space variational data
assimilation system that incorporates model-error correction terms is in an advanced
stage of development (Xu et al. 2005; Rosmond and Xu 2006).

Weak-constraint variational methods offer a great deal of flexibility in configuring a
data assimilation system to account for the presence of model errors. All such methods
introduce additional controls that can be used to move the assimilation away from a
perfect-model trajectory. Due to advances in computing and minimization techniques,
the technical issues associated with greatly increasing the size of the control vector
do not appear to present an insurmountable obstacle. Outstanding scientific issues
are much more formidable: how to design the constraints for the model-error terms
in the variational formulation? In principle this requires specification of model-error
covariances, which will determine the permissible spatial and multivariate structures
of the corrections that can be applied to the model during data assimilation. The
introduction of many additional degrees of freedom for correcting the model brings with
it the undesirable potential for falsely attributing errors in the observations (intermittent
and/or systematic) to the model, unless the constraints are somehow designed to prevent
this. Perhaps the greatest challenge lies in choosing the right degrees of freedom, i.e.
in developing physically meaningful representations of model error that can be clearly
distinguished from possible observation errors.

(b) Sequential estimation methods
The distinction traditionally made in our field between sequential and variational

data assimilation is somewhat artificial. All assimilation methods are fundamentally
sequential, in the sense that analyses are produced sequentially in time. Each analysis in
the sequence is an approximate solution of a variational problem, in which observations
are optimally combined with a model-generated background estimate. Clearly there are
important differences among systems, in the way ‘optimal’ is defined, in the nature of the
approximations made, and in the solution algorithms used, but the underlying statistical
concepts are generally similar. A key unresolved issue in data assimilation is the cycling
problem, i.e. how to efficiently and accurately propagate error information forward in
time. The primary purpose of sequential estimation methods is to address this problem.

Sequential state estimation is often framed in the context of the Kalman filter
(Kalman 1960), which provides the optimal solution of the cycling problem for a linear
stochastic–dynamic system, albeit under a very restrictive set of assumptions and with
unrealistic information requirements (Dee 1991). As in the variational formulation, the
standard technique for estimating parameters along with the model state is to augment
the state and then to reformulate the estimation problem in terms of this augmented
state. Friedland (1969) followed this approach for a class of linear systems in which
both model and observations are subject to additive systematic errors, which depend on
a set of constant bias parameters. He showed that the Kalman filter for the augmented
system in this case is algebraically equivalent to two sets of filter equations: one for the
model state estimation, and another for estimating the bias parameters. This constitutes
the so-called separate-bias estimation scheme for estimating biases in a bias-blind data
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Figure 8. As Fig. 1, but with adaptive model bias correction.

assimilation system, and for producing bias-corrected state estimates in a separate post-
analysis step.

Dee and da Silva (1998) considered the problem of estimating and removing biases
in the background fields during data assimilation. They derived several algorithms,
including an off-line bias estimator similar to Friedland’s, as well as a coupled version
in which updated bias estimates are used to produce unbiased analyses during the
assimilation. This adaptive bias correction scheme was implemented in the humidity
analysis component of the GEOS global data assimilation system (Dee and Todling
2000). We briefly review the key ideas here, and then proceed to discuss some extensions
and generalizations.

(i) Correcting persistent bias in the background. Consider the simple bias model for
background errors defined by

eb = b + ẽb with 〈̃eb〉 = 0, (16)

where the bias vector b is constant in time but otherwise arbitrary, i.e. unconstrained
by any spatial or multivariate structures. Assuming that all available observations are
unbiased, a sequential two-step algorithm for estimating the background bias together
with the state during data assimilation is

b̂k = b̂k−1 − Kb
k {yk − Hk(xb

k − b̂k−1)} (17)

xa
k = (xb

k − b̂k) + Kx
k{yk − Hk(xb

k − b̂k)}, (18)

where the subscript k denotes time, and Kb
k , Kx

k are the gain matrices for bias and state
estimation, respectively. The first step updates a previous bias estimate b̂k−1 based on the
latest observations yk, while the second step produces an unbiased state analysis using
the latest bias estimate b̂k. Setting b̂ ≡ 0 gives the standard bias-blind linear analysis
equation (3). The bias correction in (18) is optional; one can also estimate the bias in the
background fields off-line using (17) as a separate diagnostic step. See Dee and da Silva
(1998) for a complete derivation and further discussion, as well as some extensions to
non-persistent bias models.

As a trivial illustration, we show in Fig. 8 the equivalent of Fig. 1, but now including
bias correction on the background. The algorithm learns, after the first few analyses,
that the model forecast consistently overestimates the observation. It then uses this
information to adjust subsequent model predictions. As a result, the mean errors rapidly
approach zero and become independent of the observing frequency. The bias correction
is adaptive; if the bias were to change, then the algorithm would adjust the estimates
accordingly.
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Dee and Todling (2000) proved optimality of the two-step algorithm, in the sense
that it provides unbiased minimum-variance state estimates, when

Kx = BxHT(HBxHT + R)−1 (19)

Kb = BbHT(HBbHT + HBxHT + R)−1, (20)

where Bx is the background error covariance matrix for the state estimates and Bb is the
error covariance for the bias estimates, i.e.

Bx = 〈̃eb
k(̃e

b
k)

T〉 (21)

Bb = 〈(̂bk−1 − b)(̂bk−1 − b)T〉. (22)

In practice these covariances are unknown, but one can try

Bb = γ Bx (23)

if a reasonable specification for Bx is available. To adopt this model implies that the
multivariate and spatial structures of the bias corrections will be similar to those of the
analysis increments, which, depending on the application, may or may not be desirable.
The scalar parameter γ controls the adaptivity of the bias estimates b̂. With γ small, the
estimates evolve slowly, and will represent long-term time-averaged background errors.
Dee and Todling (2000) discuss the time behaviour of the algorithm in more detail,
and present a method for tuning γ based on spectral properties of the observed-minus-
background residuals (cf. Fig. 4).

(ii) A simplified version of the algorithm. The cost of the bias update in (17) can
be prohibitive, since it requires an extra solution of the analysis equation. The cost
can be reduced by using only a subset of the observations for estimating the bias,
or by expressing the bias in terms of a relatively small number of parameters, as we
show in the next section. Alternatively, with some approximations the algorithm can be
considerably simplified when (a) the covariance model (23) is used, (b) the parameter γ
is sufficiently small, and (c) the same observations used in the analysis are used for the
bias estimation.

When γ 	 1 the bias estimates will evolve slowly, and we can approximate b̂k in
(18) by b̂k−1. The terms in curly brackets on the right-hand sides of (17) and (18) are
then identical. Furthermore, using (23) in (19, 20) gives

Kb = γ BxHT{(1 + γ )HBxHT + R}−1 (24)

≈ γ Kx. (25)

This approximation seems reasonable in view of the usual uncertainties in Bx and R.
Reversing the order of (17)–(18) we obtain:

xa
k = (xb

k − b̂k−1) + Kx
k{yk − Hk(xb

k − b̂k−1)} (26)

b̂k = b̂k−1 − γ Kx
k{yk − Hk(xb

k − b̂k−1)}. (27)

It is now trivial to compute the bias update (27), since it involves a previous calculation
made in (26). This simplification of the algorithm was first suggested by A. da Silva,
and is briefly described in Radakovich et al. (2001).
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Any sequential data assimilation system can be easily modified to incorporate this
algorithm. This can be seen clearly by arranging (26)–(27) as

x̃ = xb
k − b̂k−1 (28)

dy = yk − hk(̃x)

dx = Kx
kdy

xa
k = x̃ + dx

⎫⎬
⎭ (29)

b̂k = b̂k−1 − γ dx. (30)

The bracketed module (29) represents a standard (bias-blind) analysis scheme; the bias-
correction step (28) and update step (30) do not depend on the details of this scheme.

(iii) Parametrized error models. A more flexible model for background errors with
deterministic components is

eb = b(β) + ẽb with 〈̃eb〉 = 0, (31)

where b is a known function of a vector β of unknown bias parameters. The bias model b
can comprise spatial, temporal, or multivariate constraints, either explicitly or implicity
by means of state-dependent predictors. Estimators for the bias parameters β can be
derived by expressing the relationship between the parameters and the observations:

y − h(xb) ≈ eo − Heb (32)

= eo − Hb(β) − H̃eb. (33)

If we define
g(β) = −Hb(β) and ẽ = eo − H̃eb (34)

then

dy = g(β) + ẽ with

{〈̃e〉 ≈ 0
〈̃e ẽT〉 ≈ HBxHT + R.

(35)

This defines a complete measurement model for β, describing the information about the
parameters β that is implicit in the observations.

There are many ways to derive estimation algorithms for β based on (35), for
example by state augmentation in a variational analysis as described in section 3(a).
In the special case when b is linear in β, i.e.

b(β) = Lkβ, (36)

for some linear operator Lk, the analogue of (17)–(18) is

β̂k = β̂k−1 − Kβ
k {yk − Hk(xb

k − Lkβ̂k−1)} (37)

xa
k = (xb

k − Lkβ̂k) + Kx
k{yk − Hk(xb

k − Lkβ̂k)}. (38)

This estimator is optimal when Kx is as given by (19) and

Kβ = BβLTHT(HLBβLTHT + HBxHT + R)−1, (39)

where Bβ is the error covariance matrix for the parameter estimates

Bβ = 〈(β̂k−1 − β)(β̂k−1 − β)T〉. (40)
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The gain matrix Kβ for the bias update has one row for each bias parameter and as many
columns as there are observations. The algorithm requires Bβ , but the estimates will not
be sensitive to its specification if the number of parameters is small compared to the
number of available observations. See Chepurin et al. (2005) for an application of this
algorithm for bias correction in a tropical ocean model.

(iv) Correction of model tendency errors. The sequential estimation schemes dis-
cussed so far are designed to correct biases in the background fields whenever an analy-
sis is produced. Such intermittent correction schemes can account for the accumulated
effect of model errors, but they cannot prevent the generation of the biases during the
integration of the model. To do so requires adjustments to the model tendencies, or, even
better, to the model itself.

Ideally, bias estimates obtained in a sequential bias estimation scheme should lead
to information about model errors that can be used during model integration. Thus,
instead of cycling with

xb
k = mk,k−1(xa

k−1), (41)

where mk,k−1 represents an integration of a biased forecast model from tk−1 to tk , one
would use a modified version m̃ of the model

x̃b
k = m̃k,k−1(xa

k−1, β̂k−1) (42)

such that the resulting background x̃b
k is unbiased. Note the analogy with the modified

observation operator h̃ in (12). If successful, this would obviate the need for a separate
bias correction step; for example, one could remove (28) in the simplified algorithm
discussed earlier.

The model modification (42) can be implemented using a linear updating scheme
similar to the Incremental Analysis Update (IAU) algorithm described in Bloom et al.
(1996), by applying a fraction of the correction b̂ at each time step during the model
integration. Such an incremental bias-correction technique was shown to be very effec-
tive for correcting land-surface model bias in a skin-temperature assimilation study by
Radakovich et al. (2004). More sophisticated techniques for correcting model tenden-
cies based on statistical estimates of biases in the background require an understanding
of the physical mechanisms underlying bias generation in the model. For example, Bell
et al. (2004) used on-line estimates of subsurface temperature bias in an ocean assimila-
tion system to make adjustments to the model’s pressure gradient during the integration
of the model; see also Balmaseda et al. (2006).

(v) Prediction of analysis increments. Finally we sketch an alternative approach
to sequential model bias correction during data assimilation that, to our knowledge,
has not been previously explored. It was noted in section 2(a) that a clear symptom
of bias in data assimilation is the appearance of systematic patterns in the analysis
increments, such as persistent mean values, but also spatial features that correlate
with the configuration of the observing system. For example, Fig. 9 shows mean total
column ozone increments produced in ERA-40, computed separately for all August
2002 analyses at 00, 06, 12, and 18 UTC. The mean increments range from −3 to +3
Dobson Units in the northern hemisphere, and from −11 to +14 Dobson Units in the
southern hemisphere. These plots clearly reflect the location of the satellite carrying
the sensor, and the patterns suggest that there are persistent discrepancies between the
model-predicted ozone and the measurement data.

In the presence of bias, therefore, certain components of the increments are sys-
tematic and therefore predictable. Suppose we can concoct a function fk that predicts
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Figure 9. Mean total column ozone increments from ERA-40, computed for August 2002 analyses at (a) 00,
(b) 06, (c) 12, and (d) 18 UTC. Graphics provided by courtesy of the ECMWF.
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Figure 10. Model bias correction using prediction of analysis increments. (a) shows the simulated true state
(thin), the 6-hourly observations (dots), and the assimilation obtained with Eqs. (43) and (44) (bold). Increment
prediction is turned on at the time indicated by the vertical dashed line. (b) shows the actual analysis increment
(thin) and its prediction (bold). (c) shows the background error (thin) and the analysis error (bold), and the r.m.s.

of the analysis error before and after the start of increment prediction.

the next analysis increment based on, say, the most recent L increments. Provided the
predictable part of the increment can be attributed to model errors, the algorithm

dxp
k = fk(dxk−L, . . . , dxk−1) (43)

dxk = Kk{yk − h(xb
k − dxp

k)} (44)

will correct the model background and produce unbiased analyses. Figure 10 provides a
simple demonstration of this algorithm, for the case where x is a dimensionless scalar,
and the model error comprises a slowly varying bias, an approximately diurnal cycle,
and serially correlated noise. For the increment prediction we used a lag-6 autoregressive
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(a) (b) (c)

Figure 11. (a) Bias-blind assimilation in the presence of model bias, (b) successful bias-aware assimilation
leading to reduced forecast bias, and (c) unsuccessful bias-aware assimilation leading to increased forecast bias.

moving average (ARMA) model whose coefficients are continuously updated using a
recursive least-squares identification algorithm (Ljung 1999, Eq. 11.12). Initially no
increment is predicted, i.e. dxp = 0, and the assimilation is bias-blind. Then, at the time
indicated by the vertical dashed line, increment prediction is turned on. The adaptive
ARMA scheme is clearly effective in predicting the deterministic component of the
increment (Fig 10(b)), and in reducing the r.m.s. of the analysis error (Fig. 10(c)).

4. CONCLUSION

Biases (or, more broadly, systematic errors) are widespread in data assimilation.
All ingredients of a data assimilation system—the forecast model, boundary conditions,
observations, observation operators, covariance models—can generate, extrapolate, or
enhance biases. The presence of bias can be detected on the input side by monitoring
differences between observations and their model-predicted equivalents, and on the
output side by examining systematic features of the analysis increments. Separation of
different bias sources requires additional information, such as independent observations,
knowledge of the underlying causes, or hypotheses about the error characteristics of
possible sources.

Most data assimilation systems are not designed to correct bias during the analysis
step. In concept it is not very difficult to develop bias-aware assimilation methods. The
general approach is to introduce additional parameters in the estimation problem that
represent the biases in the system. The main scientific challenge is to correctly attribute
a detected bias to its source, and then to develop a useful model for the bias. When
different sources produce similar biases, the assimilation may correct the wrong source.
This risk increases as more degrees of freedom are added to the system, for example,
in a weak-constraint variational analysis supporting model-error correction that also
contains parameters for radiance bias correction. It is not clear that constraints on the
correction terms can be designed in such a way that model bias and observation bias can
always be correctly and simultaneously identified in the analysis.

A bias-aware analysis scheme designed to correct bias in either the background
or the observations will, by construction, reduce the mean analysis increments, but
not necessarily for the right reason. In order to test whether the attribution of the
bias is correct, one needs to verify that the analysis has actually improved. Figure 11
shows schematically how a successful bias correction of the background during the
assimilation should lead to a better analysis and hence to reduced forecast errors.
Unfortunately, in practice, reducing the bias in the initial conditions may not improve
the forecast, unless the model itself is changed.

Model bias correction is particularly challenging because it is difficult to develop
useful representations for the biases or for the mechanisms that cause them. Intermittent
bias correction of background estimates in a sequential estimation scheme does not
prevent the generation of the bias during the integration of the model. Incremental
bias correction schemes, which use bias estimates to correct model tendencies, may
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be more effective in guiding the model to an unbiased forecast, provided the corrections
are physically meaningful.
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