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ABSTRACT: Although the use of climate scenarios for impact assessment has grown steadily since the 1990s, uptake
of such information for adaptation is lagging by nearly a decade in terms of scientific output. Nonetheless, integration
of climate risk information in development planning is now a priority for donor agencies because of the need to prepare
for climate change impacts across different sectors and countries. This urgency stems from concerns that progress made
against Millennium Development Goals (MDGs) could be threatened by anthropogenic climate change beyond 2015. Up to
this time the human signal, though detectable and growing, will be a relatively small component of climate variability and
change. This implies the need for a twin-track approach: on the one hand, vulnerability assessments of social and economic
strategies for coping with present climate extremes and variability, and, on the other hand, development of climate forecast
tools and scenarios to evaluate sector-specific, incremental changes in risk over the next few decades. This review starts
by describing the climate outlook for the next couple of decades and the implications for adaptation assessments. We
then review ways in which climate risk information is already being used in adaptation assessments and evaluate the
strengths and weaknesses of three groups of techniques. Next we identify knowledge gaps and opportunities for improving
the production and uptake of climate risk information for the 2020s. We assert that climate change scenarios can meet
some, but not all, of the needs of adaptation planning. Even then, the choice of scenario technique must be matched to the
intended application, taking into account local constraints of time, resources, human capacity and supporting infrastructure.
We also show that much greater attention should be given to improving and critiquing models used for climate impact
assessment, as standard practice. Finally, we highlight the over-arching need for the scientific community to provide more
information and guidance on adapting to the risks of climate variability and change over nearer time horizons (i.e. the
2020s). Although the focus of the review is on information provision and uptake in developing regions, it is clear that
many developed countries are facing the same challenges. Copyright  2009 Royal Meteorological Society
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1. Introduction

Integration of climate risk information in adaptation plan-
ning is now a priority for donor and environmental
agencies alike (DFID, 2005; World Bank, 2006; EEA,
2007; UNDP, 2007; WRI, 2007). Success will depend on
improving access to high-quality meteorological data to
characterize present climate variability; credible climate
change scenarios at the spatial and temporal scales needed
to support decision-making; technical capacity to under-
take impact assessment, options appraisal and adaptation
planning; institutional and sectoral structures in place

* Correspondence to: R. L. Wilby, Department of Geography, Lough-
borough University, Loughborough, Leicestershire, LE11 3TU, UK.
E-mail: r.l.wilby@lboro.ac.uk

to deliver climate-proofed development programmes and
projects; and the type of adaptation. Use of climate sce-
narios for impact assessment has grown steadily since
the 1990s, yet scientific output on adaptation to climate
change is trailing impact assessment by nearly a decade
(Figure 1). Possible explanations might be that, to date,
there has been much greater policy emphasis on cli-
mate mitigation than adaptation, or that a critical mass of
impacts knowledge must accrue before scenario-led adap-
tation thinking can begin, or that there are fewer incen-
tives for professionals to undertake the applied research
needed for adaptation.

However, climatologists and policy-makers are now
calling for a much more practical approach to the use
of climate change scenarios – shifting the debate from
high-level advocacy on ‘the need to act’, to regional- and
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Figure 1. Annual number of climate change science publications with the words ‘impact’ or ‘adaptation’ in either the title or abstract. Source of
data: Web of Science (accessed 8 December 2007). This figure is available in colour online at www.interscience.wiley.com/ijoc

country-level responses on ‘how to’ adapt (Schiermeier,
2007). However, the scope for mainstreaming scenario
information in adaptation planning depends on the adap-
tation assessment approach, availability of technical and
financial capacity, scale of the risk(s) and the type(s) of
adaptation being considered (Adger et al., 2005; Dessai
et al., 2005). Top-down (the so-called Intergovernmen-
tal Panel on Climate Change (IPCC)) approaches rely
heavily on climate change scenarios, culminating in an
evaluation of the adjustments needed to adapt to the
projected scenarios. Conversely, portfolio-screening and
human development approaches focus on reducing vul-
nerability to known climate variability and hence do not
necessarily require climate change scenarios (but may
deploy seasonal forecasting to provide early warning as
in Dilley, 2000). Risk management frameworks lie some-
where in between because climate change scenarios are
analysed, but with respect to critical impact thresholds
defined by stakeholders.

The time-scale for adaptation activity is also an impor-
tant consideration. Fears that climate change could under-
mine the United Nations Millennium Development Goals
(MDGs), or that new investments could underperform
(or even lead to maladaptation), mean that users of cli-
mate risk information are most interested in the next few
decades. This poses huge technical problems because the
global climate of coming decades will be dominated by
natural variations from year-to-year and decade-to-decade
arising from the chaotic nature of ocean–atmosphere
(OA) interactions, changes in the output of the sun and
the amount of aerosol injected into the stratosphere by
explosive volcanic eruptions.

Uncertainty of the climate is magnified still further at
continental and country scales, and the human signal,
though detectable and growing, is a relatively small
component of the change. However, the risk exposure
of donor portfolios will be most immediate where human
and environmental systems are already marginal (such as
semi-arid regions, or coastal zones subject to frequent
flooding). In these cases, even modest changes in the
mean climate or to extremes could be sufficient to cross
a threshold or tipping point. Furthermore, meteorological

changes could be amplified by nonlinear responses in
secondary impacts.

This implies the need for a twin-track approach: on
the one hand, the development of the scientific and eco-
nomic capacity to identify critical thresholds, then better
understand and adapt to climate variability (Washington
et al., 2006), and, on the other hand, the development of
climate scenario tools and data sets that capture incremen-
tal changes in risk over the scales needed for adaptation
planning. Although scenario methods will be the focus
of the remainder of this review, it should be recognized
that the two are related. Improved understanding of the
causes of decadal climate variability should translate into
improved predictability of regional climates and expla-
nations for abrupt changes. For example, many studies
highlight the role played by sea surface temperatures
(SSTs) in forcing rainfall variability across Africa (Gian-
nini et al., 2003), India (Wang et al., 2006) and Latin
America (Nobre et al., 2004). Hence, improved monitor-
ing of the changing conditions of oceans should, in turn,
lead to more accurate seasonal to decadal forecasts (see
below).

This review considers sources of climate risk informa-
tion for adapting infrastructure investments and economic
planning to climate variability and change over the next
couple of decades. To date, most technical guidance has
tended to focus on climate scenarios for the end of the
21st century, using examples for developed regions (e.g.
Carter, 2007; Mearns et al., 2003; Wilby et al., 2004),
but this situation is beginning to change (e.g. Lu, 2006).
We address the near-term climate information needs for
Africa, Asia and Latin America. The following sections
will: (1) describe climate forecasts for the next couple of
decades; (2) review ways in which climate risk informa-
tion is already being incorporated in adaptation assess-
ments; (3) explain the factors affecting choice of climate
scenario method; (4) describe the strengths and weak-
nesses of the available approaches (from the perspective
of secondary impacts modelling); and (5) identify oppor-
tunities for improving production and uptake of climate
change risk information for the 2020s (defined hereon
as 2011–2040). For convenience, the scenario methods
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are grouped by three levels of sophistication (low, mod-
est and high). Although arbitrary, the categories broadly
reflect increasing demands on technical, infrastructure
and resource capacity.

2. The climate outlook for the next 20 years

Global Climate Models (GCMs) are powerful tools for
representing the three-dimensional climate system using
equations describing the movement of energy (first law
of thermodynamics) and momentum (Newton’s second
law of motion), along with the conservation of mass
(continuity equation) and water vapour (ideal gas law).
Each equation is solved at discrete points on the entire
surface of the Earth, at a fixed time interval (typically
10–30 min), and for separate layers in the atmosphere
defined by a regular grid. For example, the UK Met Office
Hadley Centre third generation OA/GCM (HadCM3) has
an atmospheric model with a horizontal resolution of
2.5 × 3.75° and 19 vertical levels, and an ocean model
with a horizontal resolution of 1.25 × 1.25° and 20
vertical levels.

GCMs compute radiative transfers through the atmo-
sphere (involving water vapour and cloud interactions),
the direct and indirect effects of aerosols (on radiation
and precipitation), changes in snow cover and sea ice,
the storage of heat in soils and oceans, surface fluxes
of heat and moisture, and finally, the large-scale trans-
port of heat and water by the atmosphere and ocean.
Some GCMs incorporate land-surface schemes including
the freezing and melting of soil moisture, and the regula-
tion of evaporation by plant stomata due to variations in
temperature, vapour pressure and CO2 concentration (e.g.
Betts et al., 2007). More sophisticated models include
carbon cycling and atmospheric chemistry for trace gases
(e.g. CH4, N2O, CFC11, CFC12 and HCFC22). However,
representation of urban surfaces is seldom incorporated.

The computational burden of solving equations at thou-
sands of grid-points means the horizontal resolution of
GCMs is coarse, typically 100–400 km. Many compo-
nents of the climate system have scales much finer than
this (e.g. convective clouds, coastal breezes, urban land-
scapes) so must be parameterized. This involves simpli-
fying the effect of small-scale processes on large-scale
responses in all GCMs. The representation of clouds in
GCMs is particularly challenging, not least because of
their role in the energy balance and feedbacks arising
from increased atmospheric moisture with global warm-
ing. As well as simplifying key processes through param-
eterization, GCMs also average conditions over the entire
grid-box. For example, precipitation is assumed to occur
at a uniform rate everywhere within the cell, leading to
an overestimation of rainfall frequencies and underesti-
mation of intensities compared with reality.

Despite variations in process representation, there is
now remarkable agreement among different GCMs on
the projected global mean temperatures for the next two
or three decades (Zwiers, 2002; IPCC, 2007). The agree-
ment stems from the fact that much of the warming in

coming years will reflect the climate’s response to past
emissions and the thermal inertia of the oceans. The
consensus is also largely independent of the assumed
emission scenario. Regardless of the GCM or Special
Report on Emissions Scenarios (SRES) pathway, the
change in global mean temperature is projected to be
∼0.2 °C/decade, compared with ∼0.1 °C/decade if emis-
sions are held at year 2000 levels (Table I). Furthermore,
the projected global mean warming to 2030 is twice as
large as model-estimated natural variability during the
20th century (Meehl et al., 2007).

Natural climate variability over decades is closely con-
nected to the behaviour of major ocean circulations in the
Atlantic and Pacific. For example, the Atlantic Meridional
Overturning Circulation (MOC) charts variations in the
conveyance of warm surface water from the Caribbean
to the North Atlantic that have been linked to a host
of global climate shifts including drought in the Sahel,
levels of hurricane activity and rainfall anomalies over
Brazil (Baines and Folland, 2007). It is now recognized
that a trend from a warm to a cool state could, in the
short-term, counteract long-term anthropogenic warming.
Indeed, a regional cooling has been predicted for Europe
and North America over the next decade as a consequence
of an expected weakening of the North Atlantic MOC
(Keenlyside et al., 2008). Such a cool downturn could
pose a significant reputational risk to organizations that
communicate or plan only for a warming scenario over
the next few decades.

Despite improving understanding of decadal climate
controls, there is less certainty about temperature fore-
casts for individual years over the next 10 years. On
this time-scale, temperature forecasts are dominated by
higher frequency climate variations and external forcing
by natural and anthropogenic factors. Although changes
in forcing by external factors such as solar irradiance
and volcanic eruptions can have a substantial and last-
ing impact on the climate system (e.g. Gleckler et al.,
2006), their magnitude in the near-term is much harder
to predict. However, multi-decadal climate variations are
potentially predictable if the initial state of the ocean is
known (Pielke, 1998; Keenlyside et al., 2008).

Hence, the long-term ‘memory’ of ocean heat content
is now being exploited in state-of-the-art decadal climate
forecasts. According to the UK Met Office, the year 2014
is predicted to be 0.30° ± 0.21 °C warmer than 2004,

Table I. Global mean warming from the IPCC multi-model
ensemble mean for three periods relative to 1980–1999 under

A2, A1B and B1 SRES emissions scenarios.

Emissions 2011–2030 2046–2065 2080–2099

A2 0.64 1.65 3.13
A1B 0.69 1.75 2.65
B1 0.66 1.29 1.79
Commit 0.37 0.47 0.56

The ‘Commit’ row refers to the committed warming with emissions
stabilized at year 2000. Source: IPCC (2007).
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and at least half the years after 2009 are expected to
be warmer than 1998, currently the warmest year on
record (Smith et al., 2007). However, global averages
conceal significant regional variations in temperature
anomalies and, despite significant technical advances in
decadal forecasting capability, the products will remain of
limited value to policy-makers and planners until skilful
forecasts of regional climate anomalies become available.
Even if perfect forecasts could be issued, it is currently
unclear how this information might be assimilated by the
development community.

Nonetheless, existing technology could help quantify
changes in the risk of occurrence of certain types of
extreme (such as severe heatwaves). For example, it has
been estimated that emissions of atmospheric greenhouse
gases to date have more than doubled the risk of a
European heatwave exceeding that of summer 2003 (Stott
et al., 2004). However, formal detection and attribution
of human influences in regional precipitation records will
not be possible for decades because of the relatively
small anthropogenic climate change signal in relation to
large natural variability. The human climate signal will
be even harder to discern at the water management scale
of individual river basins (e.g. Ziegler et al., 2005; Wilby
et al., 2008).

Given such uncertainty in regional-scale climate pro-
jections as well as small increments expected over the
next 15–20 years, the question arises as to whether cli-
mate change will have a discernible impact, especially
when compared with rapid human development changes
(as witnessed, for example, in China and India)? Or put
another way, how much climate change has to happen
to be of practical significance (i.e. beyond what can
be addressed by autonomous adaptation)? The answer(s)
have a significant bearing on how climate risk informa-
tion might be used for anticipatory adaptation – a point
that is explored further in the next section.

3. Uses of climate risk information for adaptation
planning

Several agencies have already undertaken portfolio-
screening for climate risks, but less thought has been
given to how different development pathways might
affect vulnerability to climate change (Klein et al., 2007).
Nonetheless, climate information can be used to answer

a wide range of questions related to adaptation (see
Table II, after Smit et al., 2000). These activities are not
mutually exclusive and often overlap. As will be shown,
some methods are better placed than others to meet the
specific needs of different adaptation assessments. There
are also large disparities between techniques in terms of
their respective technical capacity and resource require-
ments – factors that can narrow the choice still further.

Adaptations involving new infrastructure typically
require data for a cost-function (such as annual flood
damages) in relation to climate event magnitude. The
function is adjusted upwards or downwards in line with
anticipated changes in risk, or assumed adaptation mea-
sures, to assess long-term benefits of a scheme (e.g.
Conway et al., 2006). At the screening stage, coarse res-
olution climate data can help compare adaptation options,
or determine whether a given scheme should proceed. At
the design step, more detailed information on conditions
(such as water-levels at a flood defence site, or reser-
voir inflows) are needed to assess structure performance
throughout the intended life (e.g. Caspary and Katzen-
berger, 2006).

Natural resource management has been the subject of
many climate change impact studies to date (see IPCC,
2007 or Warren et al., 2006). Spatial scales of interest
span from the crop yields of individual plots (Abraha and
Savage, 2006), through the disproportionate contribution
of mountain regions (Viviroli et al., 2007) to the global
water balance (Alcamo et al., 2007). Time-scales vary
from soil loss over a few hours through to the changing
mass balance of glaciers over decades (Schneeberger
et al., 2003). The adaptation responses vary accordingly
and may include integrated natural resource management
plans, re-allocation of resources between users, and/or
reduction of co-stressors on ecosystems.

Adjustment to natural hazards and measures to reduce
exposure to extreme events are often compatible with
adaptation to climate change, albeit at finer spatial and
temporal scales. For example, climate information might
be used to retrofit existing buildings to improve human
comfort or reduce risks from excessive heat (Hacker
et al., (in press)). The scenario tool might also be required
to incorporate local feedbacks, for example, between
heat dissipation, city design and intensity of the urban
heat island (Betts and Best, 2004). A key challenge
for modelling extreme events is representing both the

Table II. Examples of adaptation activities that require climate risk information.

Adaptation Examples of activity using climate information

New infrastructure Cost–benefit analysis, infrastructure performance and design
Resource management Assessment of natural resource availability, status and allocation
Retrofit Scoping assessments to identify risks and reduce exposure to extreme events
Behavioural Measures that optimize scheduling or performance of existing infrastructure
Institutional Regulation, monitoring and reporting
Sectoral Economic planning, sector restructuring, guidance and standards
Communication Communicating risks to stakeholders, high-level advocacy and planning
Financial Services to transfer risk, incentives and insurance
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frequency and magnitude of phenomena that are, by
definition, at the very margins of statistical distributions
(Tebaldi et al., 2006).

Other categories of adaptation involve non-structural
behavioural measures. Here, climate risk information can
be used operationally to optimize the performance of
existing assets (such as reservoirs and irrigation systems)
or to adjust scheduling of activities (such cropping
patterns or water releases for hydropower). In these
cases, information on the changing temporal sequencing
of weather events is of interest: for example, onset of the
spring snowpack melt, limiting soil moistures or first/last
frost dates (Payne et al., 2004). This requires that the
scenario method produces realistic daily sequences of
weather.

Institutional and multi-sector-wide adjustments to cli-
mate change must account for changes in physical drivers
as well as shifts in policy, regulatory and planning
controls. Although country-level assessments based on
macro-economic modelling may have relatively mod-
est climate information needs, micro-economic stud-
ies require data at finer resolutions (cf Mendelsohn
et al., 2000). For example, fine resolution scenarios are
needed when evaluating changes in competitive advan-
tage between regions and cropping systems under differ-
ent climate scenarios (e.g. Makosholo and Jooste, 2006).
In this case, accurately resolving spatial patterns of cli-
mate change (because of variations in altitude, land cover,
proximity to major water bodies, etc.) may be of partic-
ular importance (see Vuille and Bradley, 2000).

Climate information for communicating risks and rais-
ing awareness depends on the target stakeholder group(s)
and their level of scientific understanding. Core scenar-
ios help build capacity, benchmark impact studies and
mainstream adaptation (McKenzie-Hedger et al., 2006),
but there is a danger that wider uncertainties are not
recognized (for instance, over-reliance on a single cli-
mate model). Scenarios used for high-level advocacy or
policy change may focus on a very specific aspect of cli-
mate change to achieve a shift in (funding) priorities. For
example recognition of the need for greater investment in
flood defences in the UK has followed a string of damag-
ing flash-flooding episodes (see McKenzie-Hedger, 2005
or the Pitt Review, 2008).

The financial sector already relies on risk informa-
tion (e.g. Rodwell and Doblas-Reyes, 2006; Mills, 2007).
Insurance mechanisms that spread costs of adverse cli-
matic conditions between regions require an accurate
picture of expected patterns of risk. For example, maps
of coincident drought and flooding (as shown by McCabe
and Palecki, 2006) could be used to hedge losses of
hydropower in one region with gains in another. Future
scenario needs may be met by maps of global ‘hot
spots’ (Giorgi, 2006). The World Bank and UN World
Food Program favour the development of weather indices
that trigger payouts in developing countries following
weather disasters or collapses in commodity prices. If
these indices are to promote activities that are compati-
ble with projected climate changes then scenarios must

provide meaningful information on metrics such as cumu-
lative rainfall totals or soil moisture deficits.

The above examples show that no single climate
information source meets all needs of different adaptation
activities. The following section sets out some criteria
for comparing scenario methods, and is followed by an
overview of the properties, strengths and weaknesses in
each case. Again, it is assumed that the intended purpose
is scenario-led, adaptation planning, and that the time
horizon is the 2020s.

4. Criteria for evaluating scenario methods

Regional climate change projections have been reviewed
at length elsewhere (see Christensen et al., 2007).
Although the comparison of different scenario methods
has become a trade-mark activity for parts of the climate
science community (Fowler and Wilby, 2007), there is
no agreed set of diagnostics for appraising tools from the
development planning point of view. However, there have
been recent moves to bring together and better coordinate
groups interested in climate adaptation tools, recognizing
that there may be advantages from shared approaches to
G8, Organisation for Economic Co-operation and Devel-
opment (OECD) and United Nations Framework Con-
vention on Climate Change (UNFCC) processes (Tanner,
2007).

In some contexts it may be advantageous if the
scenario method has low demands for technical capacity,
supporting infrastructure or data for calibration and
simulation. Additionally, it may be helpful if scenarios
can be prepared in minutes rather than in months, and
the necessary tools are freely available. More rapid
production of scenarios, for example, can release time
for repeat investigations of key uncertainties, such as
sensitivity of impacts to choice of climate model.

In addition to logistical considerations there are several
properties that constrain the ultimate use of the scenario.
The low spatial resolution of GCMs has often been cited
as the rationale for downscaling. So for site to river
basin scale applications, direct use of GCM outputs may
not be appropriate. Applications demanding finer spatial
scales often require finer temporal resolution, as in the
example of urban drainage design. Conversely, if global
assessments of water resources are needed, then monthly
or annual GCM scenarios may suffice.

Many assessments require realistic behaviour for sev-
eral outputs, such as daily temperature, wind speeds, solar
radiation and cloud cover, to compute evaporation in
ecosystem or crop models. Others may depend on local
estimates of climate change, but simultaneously across
multiple sites, for example within a single river basin
to simulate flood peaks. Still others need information on
the time-evolving climate, rather than shifts in climato-
logical mean, say between 1961–1990 and the 2020s.
In all cases, the relationship among climate and non-
climate influences should be internally consistent such
as between socio-economic, population and atmospheric
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CO2 concentration scenarios, when assessing direct and
indirect climate change effects on crop or water yields
(e.g. Arnell, 2004).

Over the next four decades, global mean temperature
rise is largely insensitive to differences among emission
scenarios (Stott and Kettleborough, 2002). Over the
longer term, climate change projections are couched
in uncertainty about future forcing by solar output,
volcanic eruptions, rates of ocean heat uptake, and human
activity affecting the composition of the atmosphere
and feedbacks from the land-surface. Some techniques
can accommodate these components alongside model
uncertainty but are very demanding computationally.
Even so, increased supercomputer power and distributed
climate modelling experiments are enabling multi-model
ensemble and multi-physics ensemble experiments and
hence the development of probabilistic scenarios (e.g.
Stainforth et al., 2005).

Whether or not the term ‘probabilistic’ is fully justified,
or indeed if such information is actually helpful except for
high-risk adaptation decisions is debatable (Hall, 2007).
This is because results from even the most complex
experiments are still conditional on a host of factors
(such as the suite of climate models or statistical assump-
tions applied). The value-added to decision-making by
probabilistic climate change scenarios is, to date, largely
untested except for a few pilot studies (as in New et al.,
2007).

Finally, it is evident that regional predictability of cli-
mate is not the same everywhere, and gaps in knowledge
of climatology are revealed wherever there is a lack of
consensus between climate model projections. Although
there is now higher confidence in future patterns of warm-
ing and sea-level rise, there is much less confidence in
projections of the numbers of tropical storms and of
precipitation changes over large parts of Africa, South
Asia and Latin America (Table III). Indeed, the most
poorly understood regional climates tend to be found in
the tropics where there is high inter-annual variability,
strong forcing by El Niño Southern Oscillation (ENSO)
and other teleconnections, major land cover changes (and

dust generation), sparse and/or degrading observation net-
works. Table III also shows where reliance on a sin-
gle climate model is especially inadvisable, and where
weighting models by skill at reproducing observed clima-
tology could yield more robust ensemble mean forecasts.

With the above points in mind, the next three sections
critique the strengths and weakness of different methods
of producing climate risk information for the 2020s.
These options are organized in order of increasing
resource requirements.

5. Methods requiring limited resources

Four methods are considered: sensitivity analysis, change
factors, climate analogues and trend extrapolation. This
group tends to offer site- or area-specific climate risk
information, and is modestly data dependent, but places
minimal demands on technical resources. As such the
approaches can be valuable for scoping assessments.

5.1. Sensitivity analysis

A climate sensitivity analysis does not depend on any
climate change scenarios, but the assessment may be
directed by accepted regional temperature and precipi-
tation changes, such as those published in IPCC AR4.
The main requirement is a fully calibrated and validated
model of the chosen system, whether it is for snow cover
in the Himalayas (Singh and Bengtsson, 2003) or for
coastal zone inundation in the Philippines (Perez et al.,
1999). First, observed climate data are fed into the model
to establish the baseline condition of the response variable
(e.g. snow cover area, seasonal runoff volume). Next,
the same input data are perturbed by a fixed amount to
reflect an arbitrary rise in temperature for instance (such
as +0.5, 1, 1.5 and 2 °C). A model simulation is per-
formed for each change and any response is measured
against the baseline. In this way, it is possible to build
up a picture of the system sensitivity to changes in cli-
mate element. It is also possible to co-vary other system
properties such as crop type or atmospheric concentration
of CO2 (as in Abraha and Savage, 2006).

Table III. A summary of climate model consistency in regional precipitation projections for 2090–2099 under SRES A1B
emissions.

Region December–January June–August
Sahara Small decrease Inconsistent
West Africa Inconsistent Inconsistent
East Africa Small increase Inconsistent
Southern Africa Inconsistent Large decrease
Northern Asia Large increase Small increase
Central Asia Inconsistent Small decrease
Tibetan Plateau Small increase Inconsistent
East Asia Small increase Small increase
South Asia Inconsistent Small increase
Southeast Asia Small increase Small increase
Central America Small decrease
Amazonia Inconsistent Inconsistent
Southern South America Inconsistent Inconsistent

Small decrease

Regions in which the middle half of all model projections show disagreement on the sign of change are classified as inconsistent. Regions
showing model consensus are indicated as small (5–20%) or large (>20%) increases or decreases. Source: IPCC (2007).
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The sensitivity method has some distinct advantages.
The resulting climate–response relationships can reveal
critical thresholds, amplification by combinations of
stressors and nonlinear behaviour, or help isolate out-
comes from individual stressors. For example, a 10%
reduction in rainfall over the Ketar River basin, Ethiopia
produces a 30% reduction in simulated annual runoff,
whereas conversion of grazing/cultivated land to wood-
land reduces modelled runoff by ∼8% (Legesse et al.,
2003). Once calibrated, the model parameters and inputs
can also be modified to represent adaptation measures,
such as changes in land use to reduce diffuse pollution
(Whitehead et al., 2006). The method is also portable in
the sense that responses of different sectors or locations
can be compared using the same arbitrary changes.

However, without reference to historic trends or cli-
mate change scenarios cited elsewhere, it is not pos-
sible to comment on the likelihood or timing of sim-
ulated responses to given adjustments. As an observed
climate series underpins both the baseline and perturbed
experiment, the effects of unseen sequences of weather
events (such as more protracted wet or dry-spells) can-
not be investigated. Furthermore, the uncertainty due to
the impact model per se is seldom reported (Section 8),
but can be substantial relative to climate change impacts
expected by the 2020s.

5.2. Change factors

This method is one of the most straightforward and pop-
ular procedures for climate risk assessment, provided
that the prerequisite climate model outputs are avail-
able. Change factors are typically calculated for calendar
months by comparing the present and projected clima-
tology in a Regional Climate Model (RCM) (as in Sato
et al., 2007) or GCM (as in Tate et al., 2004) for grid-
box(es) overlying the target region. Alternatively, change
factors can be obtained from ensemble experiments by
sampling distributions of present and future climate sce-
narios produced by a single GCM (as in New et al.,
2007) or by several different GCMs (Favis-Mortlock and
Guerra, 1999).

Change factors for temperature (�T ) are calculated
by subtracting the model averages representing base-
line (1961–1990) from the future (e.g. 2020s, 2050s or
2080s) temperatures (Figure 2). Change factors for pre-
cipitation (�P ) are normally derived from the ratio of
the projected-to-baseline averages, but absolute differ-
ences can also be applied. The �T quantities are then
added to observations (or in the case of �P multiplied
by observations) to yield perturbed climate series at the
study location.

A major disadvantage of change factors is that per-
turbed and baseline series differ only in terms of their
respective means, maxima and minima; all other prop-
erties of the data are unchanged. The procedure can
also yield quite erratic changes in monthly factors when
applied to the 2020s due to relatively large statisti-
cal uncertainty in the baseline and future climatology

compared with the actual change expressed by different
GCMs. As with sensitivity analyses, the method does not
change the frequency of rainfalls or temporal sequencing
of events. Hence, the method may not be helpful in cir-
cumstances where changes in drought duration or onset
are critical to the assessment. Change factors will also
reflect any gross biases in GCM climatology at the scale
of individual model grid cells, such as timing of the mon-
soon onset. Most critically, the method is only feasible if
the underlying RCM and GCM scenarios are freely avail-
able and accessible for the 2020s. Unfortunately, many
archives hold only products for the 2080s (as in Figure 2),
so additional steps are needed to scale back to the 2020s
(Section 6.1).

5.3. Climate analogues

Analogue scenarios are constructed from palaeo- or more
recent instrumental records that give plausible repre-
sentations of the future climate of a region. Temporal
analogues are taken from the previous climate of the
region; spatial analogues are taken from another region
that presently has conditions that could become the future
climate at the study site. For example, the present rainfall
and temperature regime of Mauritania could be a spatial
analogue for expected climate changes across Morocco.
In doing so, the assumptions are made that the geographic
context (e.g. land–sea juxtaposition or continentality) is
comparable, and that latitudinal controls (e.g. day length
or storm track position) are not important to the impact
assessment.

A major advantage of the analogue approach is that the
climate scenario and associated impacts may be described
in far greater temporal and spatial detail than might
otherwise be possible. For example, the summer 2003
heatwave in Europe provided early sight of possible
environmental (Fink et al., 2004), societal (Palutikof
et al., 2004) and health (Haines et al., 2006) impacts
of extreme temperatures that could become the norm
by the 2040s (Stott et al., 2004). Similarly, the severe
drought of 1991/1992 in southern Africa gave proxy
evidence of actual impacts on vegetation condition and
ground cover under higher temperatures and evaporation
rates as projected by several GCMs (Mkanda, 1999).
Like sensitivity analysis, the given impacts can be
explicitly linked to a tangible climate anomaly or extreme
event which is helpful for visualizing consequences and
identifying critical thresholds.

The most significant disadvantage of temporal ana-
logues is that the climate forcing that led to the extremes
is unlikely to be repeated over coming decades. Past
vegetation–climate feedbacks, for example, may not be
applicable in the future due to recent human modifications
of land cover (Claussen et al., 2003). There is also little
scope for exploring uncertainties in future climate forcing
because of the small sample of events. Furthermore, even
if the same extreme event recurred, the human impacts
would almost certainly differ because of confounding fac-
tors such as changes in economy, infrastructure develop-
ments or adaptation measures invoked during the interim.

Copyright  2009 Royal Meteorological Society Int. J. Climatol. 29: 1193–1215 (2009)
DOI: 10.1002/joc



1200 R. L. WILBY ET AL.

Figure 2. Change factors for seasonal precipitation and temperature over Bangladesh for the 2080s under A2 and B2 emissions projected by
nine GCMs. Source: Mitchell et al. (2002). This figure is available in colour online at www.interscience.wiley.com/ijoc

The analogue method is also relatively data demanding;
in the absence of surveillance systems, necessary human
and environmental statistics may be hard to assemble.
Even so, catastrophic weather events (such as Hurricane
Katrina) can trigger major shifts in policy and attitudes
to risk despite being problematic to attribute to climate
change.

5.4. Trend extrapolation

Climate trend analysis can be a very appealing option,
at least when extrapolating over the next few years. The
attendant data and technical requirements are low com-
pared with other scenario methods. But an assumption is
made that recent climate behaviour is a sound basis for
predicting the future. This may be reasonable for slowly
varying components of the earth system such as sea
level, or ocean temperatures which are highly correlated
between successive years, even decades (Section 7.2).
Regional climate trends that are largely driven by these
elements may be robust in the near term (e.g. Marengo
and Camargo, 2008). The trend need not be linear as tes-
tified by the extensive literature on climate cycles (e.g.
Becker et al., 2008).

However, trends are highly susceptible to false ten-
dency (Chappell and Agnew, 2004; Legates et al., 2005).
This can arise because data are not homogeneous, having
been affected by a host of non-climatic influences such as
encroachment of urban areas, changes in observer, instru-
mentation, monitoring network density, station location
or exposure (Kalnay and Cai, 2003; Davey and Pielke,
2005). Even if a physically plausible climate trend is
found, the amount of explained variance may be low as
in the case of regional rates of sea-level rise (Plag, 2006).
There is also no guarantee that a trend will persist, as evi-
denced by the abrupt changes in rainfall and atmospheric
circulation of the last century (Baines and Folland, 2007;
Narisma et al., 2007).

Apparent trends can also emerge because of the undue
influence of a single outlier, particularly if it occurs
towards the end of the record. Multi-decadal variability in
annual rainfall totals can cause the strength and/or even
the sign of an extrapolated trend to change depending
on the period and/or length of record chosen (Figure 3).
Others have demonstrated that misleading trends can
be an artefact of the statistical method used to divide
data, such as percentile-based indices for temperature
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Figure 3. Annual winter rainfall trends at Tanger in Morocco since 1961 (blue line) and 1981 (red line). Extrapolating each trend forward to the
year 2015 gives changes of −16% and +14%, respectively, compared with the 1961–1990 mean. If the 1996 outlier is removed, the post-1981

gradient weakens by 55%. This figure is available in colour online at www.interscience.wiley.com/ijoc

and precipitation extremes (Michaels et al., 2004; Zhang
et al., 2005).

In short, trend analysis plays an important role in
climate change detection and attribution (e.g. Zhang
et al., 2007), but is problematic when extrapolating
variables such as regional rainfall. Even where the causes
of a trend are well understood, the inherent variability of
the climate system can cause the trend to break down
from one decade to the next.

6. Methods with modest resource needs

Three methods are considered: pattern-scaling, weather
generation and empirical downscaling. This group is
founded on statistical methods for characterizing present
and future climate behaviour at regional scales. In some
cases, bespoke software allows broader access to sophis-
ticated models through user-friendly interfaces. All meth-
ods depend on climate model output to run future sce-
narios.

6.1. Pattern-scaling

The pattern-scaling method has similarities with the
change factor approach (see above). In both cases, a
‘change field’ or pattern is derived by taking differ-
ences between a baseline (1961–1990) and future (typ-
ically 2071–2100) climate scenario. Although change
factor methods tend to rely on differences for a single
climate model grid-box, change fields are derived for
multiple grid boxes using either RCM or GCM outputs.
These local patterns are then scaled for intervening peri-
ods using projections of the global mean temperature
(Mitchell et al., 1999). For example, one GCM might
suggest a 40% reduction in spring rainfall over a region
by the 2080s associated with a 4 °C global mean tempera-
ture rise. Hence, precipitation decreases at an average rate
of 10% per 1 °C in global mean temperature change. With
scenarios of annual global mean temperature changes for
the period 2000–2100 expressed as a ratio of the mean in

the 2080s (centred on 2085), it is possible to scale quan-
tities such as regional rainfall for intervening periods.

Future emissions drive transient temperature changes
projected by climate models, so each emission pathway
has a different scaler trajectory (Figure 4). For example,
under high (A1FI) and low (B1) emissions, the Paral-
lel Climate Model (PCM) yields scalers of 0.248 and
0.477, respectively, for 2025. In the example above, these
scalers translate into 10 and 19% reductions in spring
rainfall. (The apparent paradox of smaller changes under
higher emissions is due to higher concentrations of sul-
phate aerosols and hence cooling under the A1FI sce-
nario.) Differences between climate models are also neg-
ligible if each is scaled by their respective global mean
temperature change for the 2080s. However, if different
climate models are scaled by a common reference temper-
ature change (such as their ensemble mean), the resulting
scalars would differ. This is the method applied by the
MAGICC/SCENGEN system to scale baseline data from
a range of climate models and emission scenarios (Hulme
et al., 2000).

Pattern-scaling is convenient for exploring uncertainty
because the technique can ‘infill’ between scenarios run
for different periods, emissions or initial conditions. For
example, pattern-scaled (PAT) and empirically down-
scaled [Statistical DownScaling Model (SDSM), Univer-
sity of Cape Town (UCT)], scenarios were constructed
for annual rainfall changes at Casablanca, Morocco.
Comparing PAT-HadCM3 and SDSM-HadCM3 scenar-
ios reveals the effect of the scaling method because
both have the same host GCM (HadCM3) and emissions
(Figure 5). PAT eliminates variability because all changes
are scaled back from the 2080s using the ratio between
local (Morocco) to global mean temperature change. Pre-
cipitation changes for Marrakech and Tangier would have
the same pattern as Casablanca, but would differ in terms
of their magnitude. In contrast, SDSM and UCT yield
transient scenarios that have site-specific patterns and
magnitudes of precipitation change. When aggregated to
annual totals most methods point to long-term reductions
in annual rainfall (Table IV). (The 7% increase returned
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by SDSM for the 2020s lies within the bounds of natural
variability.) However, the uncertainty due to the choice of
host GCM and downscaling method spans −7 to −49%
by the 2080s.

As high-resolution RCM simulations are costly and
time-consuming to perform, very few transient exper-
iments for 1961–2100 have been undertaken to date.
This means that without pattern-scaling, information from
RCMs would rarely be available for the 2020s. Further-
more, it is assumed that by the 2080s, the regional climate
change pattern emerges more strongly from the ‘noise’ of
natural variability. Hence, there is greater confidence that
a climate change signal, rather than variability, is being
scaled backward to earlier decades.

Pattern-scaling rests on several major assumptions.
First, that the regional climate change pattern is con-
stant between decades, and that only the magnitude of
change varies. This may be invalidated where the pat-
tern is affected by land-surface feedbacks on albedo or
by changing spatial patterns of aerosols composed of sul-
phate, soot and dust (Shine and Forster, 1999). Second,
that the regional response depends on a linear relationship
with global mean temperature. This may be reasonable
for temperature, but less so for seasonal precipitation, or
climate extremes (Good et al., 2006). Third, that the pat-
terns of change can be scaled between different emission
scenarios (such as A1FI to estimate B1). In this case,
errors may be minimized by scaling from a stronger to
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Table IV. Changes (%) in annual precipitation totals at Casablanca, Morocco projected by different scenario methods (UCT,
SDSM, PAT) and GCM forcing (CSIRO, ECHAM4, HadAM3, HadCM3, PSM) under SRES A2 and B2 emissions for the 2020s,

2050s and 2080s.

Scenarios 2020s 2050s 2080s

A2 B2 A2 B2 A2 B2

UCT-CSIRO – – – – −44 –
UCT-ECHAM4 – – – – −49 –
UCT-HadAM3 – – – – −20 –
SDSMa-HadCM3 7 −4 −18 −17 −40 −9
PAT-CGCM2 −5 −6 −10 −11 −17 −15
PAT-CSIRO −2 −4 −4 −7 −7 −10
PAT-HadCM3 −10 −6 −20 −10 −34 −14
PAT-PSM −3 −5 −6 −8 −10 −11

Ensemble mean −3 −5 −12 −11 −28 −12

Key to scenarios methods: UCT, University of Cape Town tool: Hewitson and Crane (2006); SDSM, Statistical DownScaling Model: Wilby
et al. (2002); PAT, Pattern-scaling from Tyndal CY 3.0 scalers: Mitchell et al. (2002).
a Ensemble member M1.

a weaker forcing scenario (Mitchell, 2003). Finally, the
temporal and spatial scales of the resultant scenarios will
depend on the resolution of the RCM or GCM supplying
the patterns of change. Subtle variations in responses at
sub-grid scales due to orography or land-surface may not
be captured.

6.2. Weather generation

Weather generators are models that replicate statistical
attributes of meteorological station records (such as
the mean and variance), but do not reproduce actual
sequences of observed events (Wilks and Wilby, 1999).
At the heart of most weather generators is a Markov
model that emulates transitions between wet- and dry-
spells or dry-days. The optimum statistical distribution
for representing daily rainfall totals varies from place
to place, but the gamma, exponential and fourth root
are most popular (Figure 6). Secondary variables such
as maximum and minimum temperatures, solar radiation
and wind speed are grouped into sets of wet and dry-days.
Inter-variable relationships are preserved using multiple
regression equations and it makes sense, for example,
that dry-days have on average more sunshine than wet-
days. The whole process is driven by random number
generation to determine whether a day is wet or dry, if
wet how wet, how warm, how windy and so on. This
enables weather generators to efficiently simulate long
synthetic series, useful for estimating extreme events for
design purposes (e.g. Smithers et al., 2002).

Adapting weather generators for climate change assess-
ment involves adjusting model parameters in one of two
ways. First by relating key parameters such as wet-
day probabilities to other, slowly varying indices of
atmospheric circulation (e.g. ENSO or North Atlantic
Oscillation (NAO)) (Katz, 1996). Inter-annual or decadal
changes in the frequency of these patterns (as projected
by GCMs) are then translated into revised weather gener-
ator parameters, and hence daily weather sequences under

Figure 6. Comparison of observed and modelled distributions of
daily rainfall at Addis Ababa, Ethiopia. In this case the fourth root
transformation (4TH ROOT) would be used in preference to the gamma
or stretched exponential distributions. This figure is available in colour

online at www.interscience.wiley.com/ijoc

future forcing. The second approach involves recalibrat-
ing the weather generator using daily weather series that
have been derived from the change factor method (Sec-
tion 5.2) (Kilsby et al., 2007). Hence change factors for
the 2020s would be applied to each weather variable, the
model recalibrated, then run to synthesize infinitely long
daily sequences with the same statistical properties as the
2020s series.

Unfortunately, weather generator parameter modifica-
tion for future climate scenarios can cause unanticipated
outcomes (Katz, 1996). For example, changes to param-
eters governing rainfall occurrence can have unintended
effects on secondary variables such as temperature and
solar radiation. Moreover, weather generators based on
first-order Markov chains (i.e. one-day-to-the-next transi-
tions) typically underestimate the persistence of wet- and
dry-spells. More sophisticated procedures are also needed
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for multi-site applications, or to disaggregate daily series
into sub-daily quantities, or to simulate lower frequency
variability, such as inter-annual rainfall totals (Wilks and
Wilby, 1999).

Weather generators are relatively data-intensive, requir-
ing at least a decade of daily data, or more for arid sites
(Soltani and Hoogenboom, 2005). The parameters are
sensitive to missing or erroneous data, as well as to the
number of rain days in the calibration set (Taulis and
Milke, 2005). However, weather generators are already
in widespread use and there is scope for their extension
to climate change assessments.

6.3. Empirical downscaling

Empirical downscaling methods overcome one of the
most serious limitations of applying raw GCM output
to regional impact assessment – the mismatch in scale
between climate model projections (∼300 km) and the
response units under investigation (∼individual sites to
river basin areas). One of the simplest forms of down-
scaling involves spatial interpolation of gridded GCM
or RCM output to required locations (so-called ‘unin-
telligent’ downscaling). More sophisticated techniques
rely on building quantitative relationships between large-
scale atmospheric variables (predictors) and local surface
variables (predictands). So, for example, the strength of
airflow and humidity has been used to downscale daily
precipitation totals at sites across South Africa (Hewitson
and Crane, 2006). Different downscaling approaches are
often distinguished by their predictor variable(s) suite,
or by the form of the statistical term relating predictors
to predictands. The merits of different empirical meth-
ods have been exhaustively reviewed elsewhere (Wilby
and Wigley, 1997; Christensen et al., 2007; Fowler et al.,
2007; Goodess et al., 2007). These reviews indicate that
there are no universally optimal sets of predictors, or
forms of relationship, each must be assessed on a case
by case basis.

Provided that predictor variables are available, empir-
ical downscaling can be an efficient tool for explor-
ing uncertainties in climate change scenarios (Prud-
homme et al., 2003; Wilby and Harris, 2006), or for
producing fully transient daily scenarios up to 2100
(Immerzeel, 2008). This enables appraisal of near-term
changes in both the mean and variability of climate.
Methods are also being developed to apply probabilistic
climate change information within downscaling schemes
(Benestad, 2004). Other advantages include the abil-
ity to downscale ‘exotic’ predictands (e.g. tidal surges,
air quality, extreme event indices) assuming that physi-
cally plausible relationships to large-scale weather can be
found. Where predictor variables are difficult to obtain,
direct scaling relationships can be applied, for exam-
ple, between daily GCM- and station-scale precipitation
(Schmidli et al., 2006).

Uptake of empirical downscaling techniques has been
encouraged by publicly available software and docu-
mentation (Table V). Nonetheless, access to the pre-
dictor variables necessary for calibration and scenario

development continues to be a major constraint to their
widespread use. Even if (daily or monthly) GCM out-
puts are available, further processing may be needed to
derive predictors (such as vorticity from pressure data) or
to ensure compatibility between different climate model
grids. Likewise the reliability of downscaled scenarios
depends on the quality of observations used for model
calibration, the predictability of the local variable from
the large-scale forcing, and the constancy of these rela-
tionships under changing climate conditions. Above all,
results are highly sensitive to the choice of GCM pro-
viding the predictor variables and (to a lesser extent) the
choice of downscaling technique (Figure 7).

There have been relatively few empirical downscaling
studies for Africa, Asia or Latin America, and even fewer
that explicitly deal with climate changes for the 2020s (as
in Immerzeel, 2008). In the tropics and for small islands,
strong ocean-atmosphere coupling makes consideration
of the role of the ocean unavoidable, thus enlarging the
set of potential predictors. Also the relationships between
these predictors and local variables may vary strongly
within the annual cycle. In the case of precipitation,
statistical models especially designed for a particular
month (such as the start or end of rainy season) may
be needed (Jimoh and Webster, 1999).

7. Methods with high resource needs

Two methods are considered: dynamical downscaling
and coupled OA/GCMs. Both require a high degree of
ongoing technical support and computing resource, but
these are the only methods that can produce internally
consistent climate behaviour in response to the full
range of climate forcings (i.e. radiative and land-surface
feedbacks). GCMs are, therefore, the primary tool for
representing the global climate system and nearly all
other scenario methods rely on their output.

7.1. Dynamical downscaling

RCMs simulate climate features dynamically at resolu-
tions of 10–50 km given time-varying atmospheric con-
ditions at the boundary of a specified domain (Figure 8).
Atmospheric fields simulated by a GCM (such as surface
pressure, wind, temperature and vapour) are fed into the
boundary of the RCM at different vertical and horizontal
levels. This information is then processed by the RCM
such that the internal model physics and dynamics can
generate patterns of climate change that differ from those
of the ‘host’ GCM. The nesting of the RCM within the
GCM is typically one way, so the behaviour of the RCM
cannot influence the GCM scenario. To date, RCMs have
been used for a wide variety of applications, including
numerical weather prediction, studies of palaeoclimates,
the effects of land-surface modification(s) and future cli-
mate change in selected regions of the world.

A key advantage of RCMs is their ability to model
regional climate responses to changes in land cover or
atmospheric chemistry in physically consistent ways. The
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Table V. Examples of climate scenario, risk screening and adaptation tools (updated 6 August 2008).

Tool/source Description

Clim. pact R functions for downscaling monthly and daily mean climate scenarios
(http://cran.r-project.org/src/contrib/Descriptions/clim.pact.html)

CRiSTAL Community-based Risk Screening – Adaptation and Livelihoods (http://www.iisd.org/pdf/2008/cristal
manual.pdf)

CSAG Data portal for downscaled African precipitation scenarios for the 2080s (http://data.csag.uct.ac.za/)
ENSEMBLES Experimental portal for downscaling tools applied to Europe (http://grupos.unican.es/ai/meteo/

ensembles/index.html)
FINESSI Multi-sector/multi-variable climate change scenarios for Finland (http://www.finessi.info/finessi/?page=

explore)
LARS-WG Tool for producing time series of a suite of climate variables at single sites

(http://www.rothamsted.bbsrc.ac.uk/mas-models/larswg.php)
LCA Linking Climate Adaptation – community-based adaptation (http://www.cba-exchange.org/)
MAGICC/SCENGEN Interactive software for investigations of global/regional climate change (http://www.cgd.ucar.edu/cas/

wigley/magicc/)
PRECIS UK Met Office portable RCM (http://precis.metoffice.com/)
RClimex Graphical interface to compute 27 core indices of climate extremes (http://cccma.seos.uvic.ca/

ETCCDMI/software.shtml)
SDSM Downscaling tool for scenario production at single sites (http://www-staff.lboro.ac.uk/∼cocwd/SDSM/)
SERVIR The Climate Mapper and SERVIR Viz

(http://www.servir.net/index.php?option=com content&task=view&id=101&Itemid=57&lang=en)
Tearfund Mainstreaming disaster risk reduction: a tool for development organizations

(http://www.tearfund.org/webdocs/Website/Campaigning/Policy%20and%20research/Mainstreaming
%20disaster%20risk%20reduction.pdf)

UKCIP Online adaptation data base (UK) http://www.ukcip.org.uk/resources/tools/database.asp
UNFCCC Database on local coping strategies (http://maindb.unfccc.int/public/adaptation/)
World Bank Indigenous Knowledge Practices Database (http://www4.worldbank.org/afr/ikdb/search.cfm)
WRI Climate Analysis Indicators Tool (CAIT) (http://cait.wri.org/)
WWF Climate Witness Community Toolkit (http://www.wwfpacific.org.fj/publications/climate change/cw

toolkit.pdf)
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higher spatial resolution and hence improved representa-
tion of surface elevations enable RCMs to resolve impor-
tant atmospheric processes (such as orographic rainfall
or interactions with water bodies) better than the host
GCM (e.g. Song et al., 2004; Ekström et al., 2005). How-
ever, RCMs are computationally demanding, requiring as
much processor time as the GCM to compute equivalent
scenarios. Projections for extreme precipitation events
may differ between RCMs because of the parametiza-
tion schemes used to represent sub-grid processes such
as convective rainfall.

Like empirical downscaling, the quality of regional
climate simulations depends not only on the validity
of the RCM physics but also, more critically, on the
realism of GCM boundary information. For example,
gross errors in an RCM’s precipitation climatology may
arise, if the GCM misplaces storm tracks. The results
are also sensitive to the size of model domain and grid-
spacing. Ideally, the domain should be large enough to
allow the free development of mesoscale atmospheric
circulations, and the grid-spacing fine enough to capture
detailed topographic, coastal or dynamical features such
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Figure 8. Domain and elevations (m) of the Met Office Hadley Cen-
tre’s regional climate model HadRM3. Source: http://prudence.dmi.dk/
(accessed 8 August 2007). This figure is available in colour online at

www.interscience.wiley.com/ijoc

as tropical cyclones (Walsh, 2004). In practice, domain
size and grid-spacing are constrained by computational
resources, as simulation times increase exponentially with
increasing vertical and horizontal resolution. The actual
location of the domain should capture the most significant
circulations that affect climate over the region of interest
(e.g. low-level jets, storm tracks, cyclones).

Tools such as RegCM3 and PRECIS are opening
the way for more widespread use of RCMs in climate
vulnerability and adaptation studies (Islam et al., 2008;
Pal et al., 2007). Results from the Earth Simulator
(an RCM-resolution GCM) are also being employed in
regional assessments (e.g. World Bank, 2007). However,
in common with empirical downscaling, there is still a
real paucity of published dynamical downscaling studies
for developing regions, and especially for the 2020s.

7.2. Coupled climate models

Recent GCM experiments show that global (and some
regional) mean temperatures are hindcast with substan-
tially improved skill when provided with information
about the upper ocean heat content (Smith et al., 2007;
Keenlyside et al., 2008). Much of the increased skill
arises from the persistence and predictability of ocean
temperatures over decadal time-scales (Sutton and Allen,
1997). This underlines the importance of maintaining
ocean-monitoring systems (Dickey and Bidigare, 2005),
such as the ARGO floats, to provide initial conditions
for decadal forecasting systems, as well as early detec-
tion of changes in water properties (King and McDonagh,
2005). Forecast skill is expected to improve with time as
more data on ocean conditions become available. Even
so, decadal forecasts will continue to be accompanied
by strong caveats for unforeseen volcanic activity and/or
rapid nonlinear climate change and feedbacks, both of

Figure 9. DePreSys minus NoAssim precipitation anomalies for
2007–2017 as a percentage of the 1979–2001 mean. This prototype
forecast was based on information on upper ocean heat content up to
March 2007. Source: Met Office. This figure is available in colour

online at www.interscience.wiley.com/ijoc

which could cause a sudden cool downturn (Lee et al.,
2006).

Despite significant technical advances in decadal fore-
casting capability, the products will remain of limited
value to policy-makers and planners until skilful fore-
casts of regional climate anomalies become available.
Work in this area has only just begun. For example,
Figure 9 shows a prototype forecast of regional precipita-
tion anomalies out to 2017 based on the UK Met Office’s
Decadal Climate Prediction System (DePreSys) (Smith
et al., 2007). The plot shows the difference between
model runs with (DePreSys) and without assimilated
(NoAssim) ocean temperature information. Although the
ocean temperature forcing yields strong positive anoma-
lies over the Indian subcontinent and negative anomalies
over East Africa, much more research is needed to try
to understand whether the signals are robust, and if so,
the underlying physical mechanisms. This would require
multi-model and multi-physics ensemble experiments to
quantify the large uncertainty that exists in (precipita-
tion) forecasts at such fine resolutions. Further work is
also needed to determine whether the rainfall anomalies
have any practical significance when propagated through
secondary impact models. Taken at face value, this par-
ticular forecast implies greater flood risk over India, and
higher soil moisture deficits and/or less river flow in the
Nile basin, than would be expected from greenhouse-
gas-forced climate change alone. However, the extent to
which even a perfect decadal forecast provides informa-
tion that is useful for adaptation planning is a legitimate
research question in its own right.

8. Secondary impacts modelling

Environmental models play an integral part in many cli-
mate risk assessments (whether for water resource, crop-
yield, ecosystem response, coastal inundation, human
health or multi-sectoral). The impact model can even be
the most complex element in the case of sensitivity analy-
ses (Section 5.1). However, uncertainty in responses due
to the impact model structure and/or parameters is very
seldom specified let alone reported; much more attention
is typically given to the influence of different climate
models or downscaling methods on the outcome.
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Figure 10. (a) Changing net revenue ($/Ha) reflecting uncertainty in GCM projections of temperature (blue envelope) combined with emissions
(red envelope) and impact model parameter uncertainty (gold envelope). (b) The contribution of climate model, emissions and impact model
uncertainty as a time-varying fraction of the total uncertainty in net farm revenues for Sri Lanka under projected increases in annual mean

temperature. This figure is available in colour online at www.interscience.wiley.com/ijoc

This oversight is of particular concern whenever sce-
narios for the 2020s are applied because the emission
uncertainty is negligible and the climate change sig-
nal can be weak relative to climate variability or non-
homogeneity of the model calibration data (Niel et al.,
2003). Under these circumstances impact model uncer-
tainties can be prominent, particularly for extreme events
(Cameron et al., 2000). From the handful of published
studies it is evident that uncertainty in both model struc-
ture (processes included) and parameterization (process
representation) should be considered (just as in the case
of climate model ensemble experiments): Boorman and
Sefton (1997); Füssel (2007); Jiang et al. (2007) and
Wilby (2005). In extreme cases, inadequate process rep-
resentation undermines confidence in projections (e.g.
Arnell et al., 2003).

To illustrate the extent of impact model uncertainty, a
Ricardian model of net farm revenues (Kurukulasuriya
and Ajwad, 2006) was run using annual mean tempera-
ture projections originating from different climate models
and emissions scenarios for the period 2010–2100. This
model was chosen because the authors provided a clear
description of several model structures and associated
parameter uncertainty. As expected, the analysis reveals
declining farm revenues with rising annual temperatures
(Figure 10(a)). By 2030 estimated uncertainty in the net
revenue is ∼$20/Ha, compared with ∼$150/Ha by 2100.

Initially, climate model uncertainty is the dominant com-
ponent, but this is soon replaced by impact model uncer-
tainty which contributes the largest fraction of total uncer-
tainty around the 2020s (Figure 10(b)). Thereafter, both
climate and impact model uncertainty contribute propor-
tionately less uncertainty as emission scenario uncertainty
gains prominence. This simple example highlights the
potential reductions in uncertainty that could be achieved
by improving a linear impact model, at least for the
2020s. The benefits could be even greater for nonlinear
response models.

9. Criteria for method selection

This review has critiqued climate scenario methods from
the perspective of impacts modelling and adaptation
planning over the next 20–30 years (Table VI). Decadal
forecasting presents special technical challenges, but
there is growing evidence that models are skilful over
this time horizon, at least for global mean temperatures
(Smith et al., 2007). The traditional distinction between
weather forecasting and climate change prediction is thus
becoming increasingly blurred at these time-scales.

There are a growing number of techniques that allow
inference to be made about medium-term trends in local
climate variables of use to decision makers. However, this
review has identified very few examples of studies for the
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Table VI. Options for constructing regional climate change scenarios, listed in the order of increasing complexity and resource
demand.

Method (application) Advantages Disadvantages

Change factors

Most adaptation activities

1. Easy to apply; 2. Can handle probabilistic
climate model output

1. Perturbs only baseline mean and variance; 2.
Limited availability of scenarios for 2020s.

Climate analogues

Trend extrapolation

New infrastructure
(coastal)

1. Easy to apply; 2.Reflects local conditions;
3. Uses recent patterns of climate variability
and change; 4. Instrumented series can be
extended through environmental
reconstruction; 5. Tools freely available.

1. Typically assumes linear change; 2. Trends
(sign and magnitude) are sensitive to the
choice/length of record; 3. Assumes underlying
climatology of a region is unchanged; 4. Needs
high quality observational data for calibration;
5. Confounding factors can cause false trends.

Pattern-scaling

Weather generators

Resource management,
Retrofitting, Behavioural 

1. Modest computational demand; 2.
Provides daily or sub-daily meteorological
variables; 3. Preserves relationships between
weather variables; 4. Already in widespread
use for simulating present climate; 5. Tools
freely available.

1. Needs high quality observational data for
calibration and verification; 2. Assumes a
constant relationship between large-scale
circulation patterns and local weather; 3.
Scenarios are sensitive to choice of predictors
and quality of GCM output; 4. Scenarios are
typically time-slice rather than transient.

Dynamical downscaling

New infrastructure,
Resource management,
Behavioural,
Communication

1. Maps regional climate scenarios at 20-
50km resolution; 2. Reflects underlying
land-surface controls and feedbacks; 3.
Preserves relationships between weather
variables; 4. Ensemble experiments are
becoming available for uncertainty analysis.

1. Computational and technical demand high; 2.
Scenarios are sensitive to choice of host GCM;
3. Requires high quality observational data for
model verification; 4. Scenarios are typically
time-slice rather than transient; 5. Limited
availability of scenarios for 2020s.

Resource management,
Sectoral 

Sensitivity analysis 1. Easy to apply; 2. Requires no future
climate change information;3. Shows most
important variables/ system thresholds; 4
Allows comparison between studies.

1. Provides no insight into the likelihood of
associated impacts unless benchmarked to other
scenarios; 2. Impact model uncertainty seldom
reported or unknown.

Communication,
Institutional, Sectoral 

1. Easy to apply; 2. Requires no future
climate change information; 3. Reveals
multi-sector impacts/vulnerability to past.
climate conditions or extreme events, such as
a flood or drought episode.

1. Assumes that the same socio-economic or
environmental responses recur under similar
climate conditions; 2. Requires data on
confounding factors such as population growth,
technological advance, conflict.

Institutional, Sectoral

New infrastructure,
Resource management,
Behavioural

Communication, Financial

1. Forecasts of global mean and regional
temperature changes for the 2020s; 2.
Reflects dominant earth system processes
and feedbacks affecting global climate; 3
Ensemble experiments are becoming
available for uncertainty analysis.

1. Modest computational demand; 2.
Provides transient daily variables; 3. Reflects 
local conditions; 4. Can provide scenarios
for exotic variables (e.g., urban heat island,
air quality); 5. Tools freely available.

1. Modest computational demand; 2. Allows
analysis of GCM and emissions uncertainty;
3. Shows regional and transient patterns of
climate change; 4. Tools freely available.

1. Assumes climate change pattern for 2080s
maps to earlier periods; 2. Assumes linear
relationship with global mean temperatures; 3.
Coarse spatial resolution.

1. Requires high quality observational data for
calibration and verification; 2. Assumes a
constant relationship between large-scale
circulation patterns and local weather; 3.
Scenarios are sensitive to choice of forcing
factors and host GCM; 4. Choice of host GCM
constrained by archived outputs.

1. Computational and technical demand high
(supercomputing); 2. Scenarios are sensitive to
initial conditions (sea surface temperatures) and
external factors (such as volcanic eruptions); 3.
Scenarios are sensitive to choice of host GCM;
4. Coarse spatial resolution.

Empirical downscaling 

Coupled AO/GCMs

Example adaptation activities (from Table II) are shown in italics.

2020s, or even 2050s, so many of the scenario methods
remain largely untested for these time periods. Table VII
provides a summary of desirable attributes which are
mapped in Table VIII to produce a ready-reckoner of
scenario methods, based largely on applications to the
2080s.

At the very least, Table VIII helps to exclude methods
that would be wholly inappropriate for a given activity or
level of resources. For example, temperature forecasting
with weather generator or empirical downscaling methods

would not be recommended for regions that are likely to
experience dramatic changes in land-surface properties
(such as snow cover, water body or irrigated areas); this
would be better addressed by dynamical downscaling
(e.g. Snyder et al., 2004). Conversely, a capability in
dynamical downscaling will be hard to sustain without
continued investment in infrastructure and training.

In practice, local expertise in one or more of the
above methods develops through related activities such
as weather hazard prediction or seasonal forecasting.
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Table VII. Summary of attributes used to assess the relative
merits of different scenario options.

Indicator Preferred attributes for development
and adaptation planning

Capacity Low personnel, technical and infrastructure
requirements

Resources Low data, time and financial costs
Spatial High spatial resolution (site or region, not

continental or global)
Temporal High temporal resolution (hourly or daily, not

monthly or annual)
Outputs High realism and joint behaviour of weather

variables
Forcing High ability to represent different external

forcing (land cover, aerosols)
Uncertainty High capability for providing probabilistic

information
Pattern High ability to produce surfaces or maps of

climate change
Transient High ability to produce transient (rather than

time-slice) scenarios
Tools High availability of tools, supporting data and

guidance

These indicators cross-reference to the columns in Table VIII.

Likewise, weather generators are already in relatively
widespread use for crop-yield and water resource mod-
elling. Under these circumstances, it is advisable to build
on existing knowledge and capabilities. However, the

over-riding imperative is that the most appropriate sce-
nario method is matched to the intended application
(Section 3). For example, sensitivity analysis or change
factors for macro-economic analysis; climate analogues
or empirical downscaling for the design of community-
based livelihoods programmes; dynamical downscal-
ing for communicating with stakeholders and national
policy-making across multiple sectors; pattern-scaling or
weather generators for natural resource assessment; and
coupled OA/GCMs for international advocacy.

Regardless of the intended application and choice of
method, consideration should be given to how the scenar-
ios will enable stakeholders and managers to make more
informed, robust decisions on adaptation in the face of
deep uncertainty. This means that the suppliers and users
of climate risk information need to be closely aligned
from outset. It also makes sense to demonstrate the value-
added (if any) when more sophisticated scenario meth-
ods are applied – underlining the merit of benchmarking
against simpler procedures whenever time and resources
permit.

10. Future opportunities to improve the science and
information

This final section offers suggestions for improving the
technical base for the production and uptake of climate
risk information for the 2020s. The options are grouped
into three themes: (i) basic science, (ii) uncertainty and
(iii) decision support.

Table VIII. A qualitative assessment of the extent to which different scenario methods can support climate impact and adaptation
assessments for the 2020s.
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Sensitivity analysis

Change factors

Climate analogues

Trend extrapolation

Pattern-scaling

Weather generation

Empirical downscaling

Dynamical downscaling

Coupled OA/GCMs

The headings refer to the desirable attributes listed in Table VII.
Key to cells: red (disagree), amber (neutral or depends), green (agree).

Copyright  2009 Royal Meteorological Society Int. J. Climatol. 29: 1193–1215 (2009)
DOI: 10.1002/joc



1210 R. L. WILBY ET AL.

10.1. Basic science

From outset it was recognized that benefits arise from
a combined approach to adaptation involving vulnera-
bility assessment and scenario development. Both strate-
gies require high-quality information to characterize the
full range of climate variability together with associated
societal and environmental consequences; both are ham-
pered by deteriorating meteorological networks. Indeed,
without basic meteorological data to verify model rep-
resentations of the present climate, there can be little
confidence in future projections or interpolated infor-
mation, no matter how sophisticated the tool. Similarly,
secondary impacts modelling presupposes the existence
of reliable records of river flow, crop yields, groundwa-
ter levels and so on. The need for collective action to
improve the status of all such observing systems, espe-
cially in Africa, has been stated many times before. It
may be timely and sobering to measure progress against
the specific recommendations made before the Gleneagles
G8 summit in 2005 (Washington et al., 2004).

There are also gaps in understanding of fundamen-
tal climate controls for large parts of Africa (including
Central-east Africa, the Ethiopian Highlands and Sahel),
as well as tropical cyclone behaviour (over Madagascar),
stability of Arctic Oscillation/El Niño teleconnections and
land-surface feedbacks on regional climate. This is evi-
denced by divergent outlooks for vulnerable regions such
as the Sahel (where Held et al., 2005 assert that the future
will be ‘drier’ and Hoerling et al., 2006 ‘wetter’). Part
of the solution involves supporting intense field cam-
paigns [like the EU African Monsoon Multidisciplinary
Analyses (AMMA) project] to collect data on poorly
understood climate processes, or primary information for
data sparse regions, especially in the Tropics. More could
be done to assess the realism of teleconnection patterns
within GCMs using existing model runs. This might
involve evaluations of the stability of known teleconnec-
tions over multi-decadal time-scales, or the consequences
of poorly understood teleconnections (such as the warm-
ing of the Southwest Atlantic).

Improved skill at forecasting decadal temperatures is
expected to translate into improved skill at forecasting
regional water cycle components (e.g. rainfall, evapora-
tion, soil moisture, groundwater and river flow). These
products are potentially of greater interest to planners
than global mean temperatures alone. However, natu-
ral internal climate variability will be magnified at finer
spatial scales, increasing uncertainty in forecasts. An
interim step might be to test probabilistic decadal fore-
casts for strategically significant sub-continental regions
such as the River Yangtze (Weng et al., 1999; Blender
and Fraedrich, 2006), or the Nile basin, where environ-
mental and human responses to decadal climate variabil-
ity are already well understood (Eltahir, 1996; Conway,
2005). River flow forecasts may be more skilful if decadal
forecasts are downscaled to river basins before water bal-
ance modelling (Lettenmaier, pers. comm.) rather than
relying on flows computed within the coarse resolution

GCM itself (as in Manabe et al., 2004) – but this needs
to be tested.

10.2. Uncertainty

Decadal forecasting and empirical downscaling are for-
ward running scenario methods that emphasize the impor-
tance of initial conditions and GCM predictors, respec-
tively. Pattern-scaling methods typically hindcast scenar-
ios for the 2020s from emergent regional climate change
patterns in multi-GCM ensembles or RCM runs for the
2080s (as in Hulme et al., 2002; Xiong et al., 2007).
The latter is preferable to bespoke RCM simulations for
the 2020s because RCMs are sensitive to initial condi-
tions and the regional climate change signal is expected
to be small relative to inter-annual variability. Further-
more, pattern-scaling offers the prospect of extrapolation
beyond the limited set of RCM experiments to evaluate
uncertainties due to the host GCM forcing or emission
scenario. In contrast, decadal forecasting and empirical
downscaling can be more resource-intensive but provide
information on inter-annual behaviour. Thus, it would be
informative to compare the value-added of forward run-
ning experiments for the 2020s with pattern-scaling back
from the 2080s (as in Figure 5). Conversely, the same
experiments could test the validity of assumptions about
invariant patterns, and linear scaling of regional climate
(including extremes) by global mean temperatures (Sec-
tion 6.1).

Uncertainties in climate change impacts attributed to
the secondary impact model per se are seldom recognized
let alone quantified alongside those due to the climate
model or translation of emissions pathways into green-
house gas concentrations. To date, climate risk assess-
ments have focussed almost exclusively on climate model
uncertainty and have, therefore, overlooked major com-
ponents of uncertainty. Part of the responsibility lies with
the research community taking a much broader perspec-
tive on uncertainty and combining traditionally separate
elements within unifying assessment frameworks (Wilby
and Harris, 2006). The problem can also be addressed
closer to source whenever climate information is being
generated centrally on behalf of a broader constituency.
For example, the latest set of river flow change factors
provided to UK water utilities to inform their 25-year
plans incorporate both climate and hydrological model
uncertainty (UKWIR, 2007). Guidance for climate risk
assessment should reflect latest understanding of impact
model uncertainty and stress its importance particularly
when nonlinear and/or discontinuous responses are likely.

10.3. Decision support systems

There is a growing appreciation that the populations,
infrastructure and ecology of cities are at risk from the
impacts of climate change. At present, roughly 50% of
the world’s population live in cities, but this is expected
to rise to more than 60% over the next 30 years. Most of
the future growth of the urban population is anticipated
in the developing world. Vulnerable populations of many
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low-income countries are already exposed to shortages
of clean drinking water and poor sanitation, and often
occupy high-risk areas such as floodplains and coastal
zones (Haines et al., 2006). Target 11 of MDG7 (‘ensure
environmental sustainability’) aims to achieve a signifi-
cant improvement in the lives of at least 100 million slum
dwellers by 2020. Although the situation is improving,
surprisingly little is known about how built environments
will respond to climate change (Hunt et al., 2007; Walsh
et al., 2007; Wilby, 2007, 2008) especially in developing
regions (Magadza, 2000; du Plessis et al., 2003). Adap-
tation options include improving preparedness and fore-
casting of climatic hazards, such as intense heat island or
air pollution episodes, to safeguard human comfort and
health. Technical guidance is also needed for appropriate
building design and climate-sensitive planning, avoidance
of high-risk areas through more stringent development
control, incorporation of climate change allowances in
engineering standards applied to flood defences and water
supply systems, and for optimum management of green
spaces for urban cooling and flood attenuation.

Downscaling methods provide finer resolution scenar-
ios for impacts modelling, but adaptation policy and plan-
ning typically require economic information at national
and local tiers of government (Burton, 2007). New con-
ceptual and modelling frameworks will be required to
‘upscale’ from the plethora of local studies. Macro-
models and integrated assessment tools already exist
for testing multi-sector impacts of climate and socio-
economic change (e.g. Hayhoe et al., 2004; Holman
et al., 2005), but what is still lacking are the means
to incorporate plausible adaptation mechanisms at such
coarse scales. Above all, there is an urgent need to
convert awareness of local climate change impacts into
tangible adaptation measures that span local-government
levels (where planning decisions are made to specific
requirements) to national levels (where informed policies
must be set in climate sensitive sectors). Available sci-
entific evidence must also be translated into guidance for
practitioners in both public and private sectors. In addi-
tion, composite indices of the strength of future climate
change relative to natural variability, alongside measures
of human development and vulnerability, could help tar-
get resources for adaptation. Existing indices could be
enhanced by inclusion of sea-level rise alongside metrics
of temperature and precipitation change (Baettig et al.,
2007) and applied to the 2020s and 2050s.

Improved access to climate model products and sce-
nario tools would significantly increase opportunities for
generation and uptake of climate risk information at the
country-level. There are a few good examples of online
tools that exploit climate products, combined with local
meteorological data, to deliver climate simulations at
time and space scales relevant to stakeholders (Table V).
Other public domain tools are less quantitative or share
indigenous knowledge and practical experience from dis-
aster risk reduction to help inform adaptation strategies.
However, a more strategic approach is needed to bet-
ter coordinate and maintain existing portals, as well as

to provide guidance in the appropriate choice and use
of tools, at the country-level. Online training materials
tailored to local adaptation priorities and capacity needs
could be delivered through the same portal. A specific
need is to continually improve the accessibility and for-
mat of AR4 climate change scenarios distributed by the
IPCC Data Distribution Centre (DDC) portal.

11. Concluding remarks

This review provides a compendium of tools for con-
structing climate change risk information for the 2020s
timeframe. The emphasis was on the needs of develop-
ing regions because of the greater economic significance
of climate variability and extremes, greater vulnerability
of populations and lesser capacity to adapt. However, it
is clear that many developed countries face similar chal-
lenges. In either context, it is necessary to evaluate the
available scenario methods, their comparative strengths
and weakness, infrastructure and capacity requirements.
However, entry points for mainstreaming scenario infor-
mation in adaptation planning depend on the country-
level technical and financial capacity, scale of the risk(s),
as well as the timing and type(s) of adaptation being
considered.

One option is to begin by evaluating the sensitivity of
infrastructure and processes to observed climate variabil-
ity – this does not even require climate model informa-
tion but can highlight key vulnerabilities. Scenario-led
adaptation and development planning requires climate
risk information tailored to the specific needs of dif-
ferent audiences, especially critical sectors, and where
early or severe impacts are anticipated. Clearly, the two
approaches are complimentary: vulnerability assessment
to identify measures that address climate variability and
climate model uncertainty in the short-term; and climate
scenarios to test measures that counteract incremental
changes in risk over coming decades. Above all, the
scientific community will need to pay much greater atten-
tion to the production of climate risk information and
guidance on appropriate use over typical planning hori-
zons – this means shifting emphasis from the 2080s to
the 2020s and 2050s.
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