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The effective resolution of a numerical scheme describes the smallest spatial scale (largest
wavenumber) that is completely resolved by that scheme. Using dispersion relation analysis
allows the effective resolution of a numerical scheme for the advection equation to be
calculated. The advection equation is a fundamental building block of dynamical cores of
atmospheric and ocean models, and this analysis provides an indication of the effective
resolution of the numerical methods used by dynamical cores. Using a variety of finite-
difference schemes, the effect on effective resolution of using explicit diffusion and hyper-
diffusion terms is examined. The choice of order-of-accuracy, and the time-stepping of
the numerical scheme is also investigated with regard to effective resolution. Finally, we
apply this analysis to methods that are commonly used in dynamical cores of atmospheric
general circulation models, namely semi-Lagrangian and finite-volume methods.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Advection schemes are an important building block of atmospheric dynamical cores. The dynamical core is the fluid
dynamics component of an atmospheric model, and it solves the adiabatic governing equations (usually the primitive equa-
tions under certain approximations, for example hydrostatic balance) and the equations governing the transport of tracers.
As well as solving the transport equations, advection schemes can be modified to solve conservation laws, such as the
continuity equation for fluid density, or the vorticity equation. There are many different types of numerical methods that
are used for advection in dynamical cores of general circulation models (GCMs), such as finite-difference [8], finite-volume
[20,38], semi-Lagrangian [4,47], and spectral element [5]. It is important to understand the properties of different numeri-
cal methods, either to better understand the properties of existing advection schemes and dynamical cores, or to make an
informed modeling choice when designing future models.

One property of a numerical method is the effective resolution. Whereas ‘resolution’ usually refers to the model’s grid
spacing, the effective resolution of a numerical scheme is generally defined as the smallest spatial scale (i.e. the largest
wavenumber) that is ‘fully resolved’ by said numerical scheme. The shortest fully resolved wavelength, i.e. the effective
resolution, is usually considerably larger than the grid spacing [41]. It is desirable to determine the effective resolution
of a numerical scheme, and therefore the effective resolution of a model that makes use of the scheme. For example, in
atmospheric modeling there is a desire to resolve features that are unresolved or only marginally resolved by current models,
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and thus improve weather forecasts and climate predictions [31]. As a higher effective resolution means that more features
will be resolved by the model, increasing a model’s effective resolution (through the choice of numerical methods) could
prove a cheaper alternative than just doubling the grid resolution. This idea is closely related to the concept of ‘equivalent
resolution’ as discussed in [46].

In addition, understanding the effects of explicit diffusion and filters on effective resolution provides insight into the
tuning of diffusion coefficients (and the consequences of badly tuned parameters). With full GCMs the coupling of the
subgrid-scale physical parameterization package and the “resolved” dynamical core is an important issue [6], and the physics
parameterizations are often coupled to the dynamics at the grid scale. However, the dynamics do not truly resolve the grid
scale, and it may be beneficial to add some of the physics to only the resolved scales i.e. the effective resolution [16]. Such
GCM experiments with finer grid spacings in the dynamical core and coarser grids for the physics forcings were evaluated
by Williamson [44]. For weather and climate models, composed of both dynamics and physics, Skamarock [31] suggested
numerically calculating the effective resolution based upon the departure of the kinetic energy spectra from a given power
law. However, analytical methods can be used to calculate the effective resolution of linear advection schemes, as proposed
in this paper.

One tool to evaluate the properties of numerical schemes is dispersion relation analysis [28]. Linear dispersion relation
analysis and von Neumann stability analysis of numerical schemes for atmospheric models has previously been performed
for a variety of methods and equation sets [22,25,17,32]. This analysis can be used to investigate dispersive properties (such
as group velocity and phase speed) and diffusive properties, and can be used to determine accuracy and stability of the
numerical scheme [36,42]. Using this analysis to measure the effective resolution of a numerical method was introduced by
Ullrich [40]. In [40], several different types of numerical methods (finite-volume, spectral element, spectral finite-volume,
and discontinuous Galerkin) were analyzed for the linear wave equation with exact time integration, and their dispersive
and diffusive properties were used to determine the effective resolution for different orders of accuracy. The aim of our
paper is to modify this analysis for use with different time integration methods, to show the impact of the time integration
scheme and the choice of timestep on the effective resolution of advection schemes. We also investigate the effect of explicit
diffusion and hyper-diffusion terms on the diffusive and dispersive properties of a numerical scheme, and therefore the
impact this diffusion has on effective resolution. We investigate these issues using simple finite-difference schemes, before
applying the analysis to methods that are commonly used in transport schemes for dynamical cores; semi-Lagrangian and
finite-volume methods. The assessment of the effective resolution of schemes for the advection equation is a first step
towards investigating the effective resolution of the non-linear dynamics component of a GCM. There are many different
types of advection schemes (see, for example, [30]). Our paper is not meant to be a comprehensive study of all advection
schemes, but introduces the concept of calculating the effective resolution through a variety of possible choices in the
algorithm. Although our focus is on numerical methods for atmospheric dynamical cores, the analysis can be applied to
advection schemes that are used in any field of numerical analysis.

Some form of diffusion (either implicit in the numerics, as an explicitly added term, or in the form of a filter) is usually
required for models solving non-linear governing equations on a fixed grid. In numerical studies of three-dimensional tur-
bulence (large eddy simulation – LES) a subgrid model is required to dissipate kinetic energy, as this represents the effects
of the unresolved flow on the resolved flow [23]. For two-dimensional flow it is the enstrophy which cascades downscale
to unresolved scales, and therefore must be dissipated [13]. The atmosphere is strongly multiscale, with many interactions
between these scales. Due to the effects of stratification and rotation, the atmosphere may resemble two-dimensional flow
at large scales [1], before transitioning to three-dimensional flow at smaller scales. In dynamical cores of atmospheric mod-
els the diffusion is used to prevent the accumulation of potential enstrophy and kinetic energy at the grid scale, and also
to dissipate tracer variance in the transport scheme [33,14]. This diffusion is often added in an ad-hoc way, and heavily
tuned to provide optimal results [12]. For the constant velocity linear advection equation there are no diffusion effects in
the true solution, although there are a number of numerical reasons that a modeler might chose to add diffusion to their
scheme (for example to improve stability, to damp computational modes, or to ensure monotonicity). This means that al-
though diffusion is undesired in the linear dispersion analysis for the linear advection equation, it is an essential part of
the numerical methods that make up the dynamical cores. For this reason we consider the effects of some of the different
forms of diffusion on the effective resolution of advection schemes.

This paper is structured as follows. Section 2 describes the one-dimensional linear advection equation and the dispersion
relation and von Neumann analysis methodology. Using the dispersion relation analysis to determine the effective resolution
of a number of numerical schemes is presented in Section 3, where we use finite-difference schemes to show the effects
of order-of-accuracy, diffusion and time-stepping on effective resolution. We then turn our attention to numerical methods
that are commonly used in dynamical cores, such as semi-Lagrangian and finite-volume methods. Conclusions are drawn in
Section 4.

2. The advection equation

The one-dimensional advection equation is given as

∂q + u
∂q = 0, (1)
∂t ∂x
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where q(x, t) is a tracer mixing ratio, u is the constant velocity, x is the horizontal direction and t is time. Note that all
quantities are dimensionless in this paper, and that throughout we use u = 1. Since u is constant, the one-dimensional
linear advection equation can also be written in flux form as

∂q

∂t
+ ∂uq

∂x
= 0. (2)

Note that for non-constant velocities the flux form must be written in terms of a tracer density, and that the form given
here is for the special case of constant density. The advective form (1) and the flux form (2) are interchangeable for constant
velocities. The advection equation supports wavelike solutions of the form

q = q̂ exp
(
i(kx − ωt)

)
, (3)

where k is the spatial wavenumber, ω the frequency, q̂ is the amplitude, and i = √−1 is the imaginary unit. The wavelike
solutions allow the calculation of the dispersion relation (which can also be used to calculate the phase speed and the
group velocity) as

ω = ω(k) = uk, (4)

and the amplitude factor

|Γ | = ∣∣exp (−iωt)
∣∣ = 1. (5)

For numerical solutions to the advection equation an important quantity is the Courant number c = u�t/�x, where
�t is the timestep and �x is the grid spacing. The Courant number is linked to the stability of a numerical scheme (it is
common for methods to be unstable for c > 1). In fluid dynamics problems the velocity u is rarely constant, and therefore in
this paper we consider the analysis over a number of Courant numbers. In this paper we only consider the case of uniform
grid spacing, i.e. constant �x.

To calculate the amplitude factor and dispersion relation of a given numerical scheme we use von Neumann analysis and
insert the solution for the discrete tracer

qn
j = q̂ exp

(
i(kx j − ωtn)

)
, (6)

into the scheme’s discretization. Here j and n are the spatial and temporal indices, with �x = x j+1 − x j and �t = tn+1 − tn .
We divide each term in the discretization by (6), to give a relationship between the numerical amplitude factor |Γ | =
|exp(−iω�t)| and k. The amplitude factor |Γ | shows which wavenumbers k are damped or amplified by the numerical
scheme. If the amplitude factor exceeds 1 for any k, then the scheme is unstable.

For a two-time-level scheme, the resulting expression for the scheme’s discretization will only contain the amplitude
factor to the power one. For a three time-level scheme we obtain an expression which is quadratic in Γ , and thus requires
the solution to the quadratic equation to give the amplitude factor in terms of k. Similarly, a four time-level scheme gives
a cubic equation. Note that the correct root must be selected to give the actual amplitude factor of the physical mode, and
not that of the computational modes.

We proceed by first calculating the amplitude factor and then the dispersion relation. Comparing a numerical scheme’s
dispersion relation with the true dispersion relation shows which wavenumbers are properly capturing the dispersive prop-
erties of the advection equation. The numerical dispersion relation can be computed via (5) as

ω = − log Γ

i�t
. (7)

We are interested in comparing the effect of choosing various timesteps for a given spatial grid. In order to provide a fair
comparison, we evaluate the cumulative effect of the schemes over the distance �x. This is equivalent to saying that for a
Courant number of c = 0.1 the analysis must be repeated 10 times to give the corresponding result for analysis performed
with c = 1. To make the analysis consistent, unless noted otherwise, we run to c = 1. This means that we evaluate the
numerical schemes as they transport q over the distance �x. Therefore, we set the number of timesteps as m = 1/c and
calculate the numerical amplitude factor as

|ΓN | = ∣∣Γ m
∣∣, (8)

and the numerical dispersion relation as

ωN = − log Γ m

i�tm
. (9)
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3. Determining effective resolution

Following [10,40] we define a wavenumber k as being ‘fully resolved’ by a numerical scheme if the numerical scheme
satisfies both the dispersive and diffusive properties of the advection equation at that wavenumber. The numerical dispersion
relation ωN is classed as satisfied at wavenumber k if

|Re(ω) − Re(ωN )|
|Re(ω)| � ε, (10)

for wavenumber k at some error threshold ε . Similarly, the diffusive property is satisfied using the numerical amplitude
factor ΓN at wavenumber k if

||Γ | − |ΓN ||
|Γ | � ε, (11)

for wavenumber k. The true dispersion relation and amplitude factor are given by (4) and (5). The effective resolution of a
numerical scheme is thus defined as the shortest wave (with wavelength N�x) which satisfies both the dispersion relation
(10) and the diffusive property (11) metrics, for all waves with wavelength λ � N�x. Therefore, a scheme has a better
effective resolution and can resolve smaller scales for smaller values of N . Note again that in these calculations we take the
cumulative amplitude factors and dispersion relations, (8) and (9), as we perform the analysis on the numerical scheme as
it transports q over the distance of one grid space, �x (i.e. using m = 1/c in (8) and (9)).

The choice of the threshold ε has a large impact on which wavenumbers are classified as resolved. Following [40] we
choose ε = 0.01, i.e. the numerical dispersion relation and amplitude factor must be within 99% of the analytic value. This
threshold corresponds to a wave being damped by 10% over approximately 10�x, and being completely out of phase over
the distance π�x/0.01. Note that we are weighting the diffusive and dispersive errors equally, and that it would be viable
to use different ε for diffusion and dispersion errors when calculating the effective resolution.

We use this methodology to investigate the effective resolution of advection schemes. We use simple finite-difference
schemes as a general case to highlight the effects of three modeling choices: order of accuracy; explicit diffusion; and
time-stepping. We then focus on numerical methods that are relevant to tracer transport and dynamical cores, investigating
semi-Lagrangian schemes (Section 3.4) and finite-volume schemes (Section 3.5).

3.1. Order of accuracy

In general, for smooth data, a numerical method with a higher formal order of accuracy will be more accurate than a
scheme with a lower order of accuracy. However, increasing the order of accuracy of a numerical scheme is usually com-
putationally expensive, especially for multi-dimensional schemes. Hence there is a need to consider the effect of increased
accuracy with increased cost [15]. In this section we show the effects of increased accuracy on effective resolution.

ADER (Arbitrary-order DErivative Riemann) schemes are finite-volume methods used to solve conservation laws using
monotonic limiters [34,27], although they can easily be written as finite-difference schemes for the linear advection equa-
tion. They have the same temporal and spatial orders of accuracy, and hence they can be used to investigate the effect of
the order of accuracy of a numerical scheme on the effective resolution. Note that for our analysis we use ADER schemes
without any limiters. The use of limiters makes these schemes non-linear, whereas the dispersion relation analysis and von
Neumann stability analysis can only be applied to linear schemes. The linear advection equation is solved as

qn+1
j = qn

j − c
(
q̃

n+ 1
2

j+ 1
2

− q̃
n+ 1

2

j− 1
2

)
, (12)

with the flux-like terms q̃
n+ 1

2

j− 1
2

calculated to the desired order of accuracy. Here the half spatial indices relate to the midpoint

between finite-difference points (or the cell edges of finite-volume cells). The well known Lax–Wendroff scheme [19], which
calculates the flux-like terms as

q̃
n+ 1

2

j− 1
2

= 1

2

(
qn

j + qn
j−1

) − 1

2
c
(
qn

j − qn
j−1

)
, (13)

can be classed as a second-order ADER scheme. It is evident that the Lax–Wendroff/ADER schemes can be written in flux

form (2), with the numerical fluxes given by uq̃
n+ 1

2

j± 1
2

. As the Lax–Wendroff/ADER schemes can be extended up to arbitrary

order of accuracy [35], we use orders 2–6, and also include the first-order upwind scheme in our analysis.
Fig. 1 shows the maximum resolved wave (in terms of N�x) for ε = 0.01 for the Lax–Wendroff/ADER schemes for

Courant numbers 0 < c � 1. The effective resolution when only the diffusive component is considered is shown in the left
plot. The effective resolution when only the dispersive component is considered is shown in the center plot. The right
plot shows the effective resolution when both the diffusive and dispersive components are considered, and therefore is the
maximum of the left and center plot for each Courant number. Note that the first-order and fifth-order schemes have zero
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Fig. 1. The maximum resolved wave (in terms of N�x) for ε = 0.01 due to diffusion errors (left), dispersion errors (center), and both diffusion and dispersion
error (right), for Lax–Wendroff/ADER schemes of order 1 to 6. The right plot is therefore the maximum of the left and center plots. The smallest possible
resolved wave is N = 2�x.

dispersion errors at c = 0.5. At c = 1, for each order scheme both the diffusive and dispersive error terms become zero,
meaning that the schemes have zero error for c = 1. Hence the effective resolution reverts to 2�x at c = 1.

As seen in the right plot of Fig. 1, the increase in order of accuracy results in a higher effective resolution, as expected.
However, the level of improvement decreases as the order of accuracy gets higher. For example, the increase in effective
resolution from first- to second-order is approximately 20�x for c = 0.05, and the increase from fourth- to fifth-order is
approximately 2�x for c = 0.05.

These results can also show us the effectiveness of increasing the grid resolution. For example, for c = 0.05 the second-
order Lax–Wendroff scheme has an effective resolution of approximately 26�x. Doubling the grid resolution would result
in the second-order Lax–Wendroff scheme resolving 26�x of the fine grid, and 13�x of the original, coarse grid. However,
the third-order ADER scheme resolves approximately 10�x on the original, coarse grid. This implies that it is beneficial (in
terms of number of resolved waves) to use the third-order ADER scheme on the coarse grid rather than the second-order
Lax–Wendroff scheme on the finer grid.

3.2. Effect of explicit diffusion

Explicit diffusion terms can be applied to any scheme for the advection equation. Here we use the second-order Lax–
Wendroff scheme used in the previous section for simplicity. The coefficients in this section are chosen to illustrate the
effects of diffusion on effective resolution. When additional hyper-diffusion terms of order 2p are used, the advection equa-
tion becomes the advection–diffusion equation of the form

∂q

∂t
+ u

∂q

∂x
= (−1)p+1μp

∂2pq

∂x2p
, (14)

for p = 1,2,3,4, . . . , where μp is the diffusion coefficient. The diffusion coefficient is chosen as μp = νp�x2p/�t , where
νp is a constant. For the analysis in this paper we approximate second-order diffusion as

∂2q

∂x2
≈ 1

�x2

(
qn

j+1 − 2qn
j + qn

j−1

)
. (15)

The use of second-order diffusion with the second-order Lax–Wendroff scheme is shown in Fig. 2. Three diffusion coeffi-
cients are used, each increasing in magnitude by a factor of two. The use of explicit diffusion increases the diffusion errors
of the scheme, but it can also remedy some of the dispersion errors in the second-order Lax–Wendroff scheme. The choice
of diffusion coefficient becomes important, as it is desirable to decrease dispersion errors without producing too many dif-
fusion errors. Using explicit diffusion and the ‘right’ coefficient with the second-order Lax–Wendroff scheme can improve
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Fig. 2. The maximum resolved wave (in terms of N�x) for ε = 0.01 due to diffusion errors (left), dispersion errors (center), and both diffusion and
dispersion error (right), for the second-order Lax–Wendroff scheme with ∇2 diffusion of different coefficient strength.

the effective resolution of the scheme. In general, adding the diffusion terms reduces the dispersion error, and therefore
the schemes with the diffusion and hyper-diffusion achieve (nearly) zero dispersive error at Courant numbers less than 1
(as opposed to c = 1 for the Lax–Wendroff/ADER schemes). Then as c → 1, the additional diffusion terms do not cancel the
dispersion errors, and the resolved waves due to dispersion errors increase for each of the schemes with diffusion.

We also consider the effects of higher-order hyper-diffusion applied to the fourth-order ADER scheme. The results (not
shown) agree with the second-order diffusion, in that the hyper-diffusion increases diffusion errors, but decreases dispersion
errors. The lower ordered hyper-diffusion, e.g. fourth- and sixth-order, has the most effect on the diffusion and dispersion
errors, with higher-order hyper-diffusion (eighth-order and above, i.e. p � 4 in (14)) having almost no impact on the effec-
tive resolution of the fourth-order scheme.

3.3. Time-stepping scheme

Section 3.1 shows the effective resolution when forward-in-time, Lax–Wendroff/ADER time-stepping is used. However, as
the Lax–Wendroff scheme is rarely used in current transport schemes or dynamical cores we investigate more commonly
used time-stepping methods. Here we show the effective resolution for second- and fourth-order spatial schemes with
different types of time-stepping. In this paper, the spatial derivative is approximated using the second-order approximation

∂qn
j

∂x
≈ 1

2�x

(
qn

j+1 − qn
j−1

)
, (16)

and the fourth-order approximation

∂qn
j

∂x
≈ 1

12�x

(−qn
j+2 + 8qn

j+1 − 8qn
j−1 + qn

j−2

)
. (17)

We consider leapfrog, Adams–Bashforth [7], Runge–Kutta [9], and implicit time-centered time-stepping schemes.
The leapfrog scheme is temporally second-order, and discretizes the advection equation as a centered difference approx-

imation in time

qn+1
j = qn−1

j − 2u�t
∂qn

j

∂x
. (18)

Leapfrog time-stepping is common with both spectral and finite difference methods (such as the vertical discretization of
[8]). The third-order Adams–Bashforth method [7] makes use of data at four-time levels, and is discretized as
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Fig. 3. The maximum resolved wave (in terms of N�x) for ε = 0.01 due to diffusion errors (left), dispersion errors (center), and both diffusion and
dispersion error (right), for leapfrog (LF), third-order Adams–Bashforth (AB3), fourth-order Runge–Kutta (RK4) and implicit time-centered (IMTC) schemes
with spatial order 2 and 4. Also shown are the second and fourth-order Lax–Wendroff/ADER schemes (ADER) from Fig. 1. The right plot is the maximum
of the left and center plots, and as the dispersion errors dominate for each of these schemes, the right plot and center plot are identical (apart from the
fourth-order ADER scheme). The lines that end before c = 1 show the stability limit of the schemes, i.e. the last stable Courant number for that scheme.

qn+1
j = qn

j − u
�t

12

(
23

∂qn
j

∂x
− 16

∂qn−1
j

∂x
+ 5

∂qn−2
j

∂x

)
. (19)

The Runge–Kutta schemes are a family of time-stepping schemes that have been used in a variety of atmospheric problems
[11,37,43]. Here we use the fourth-order version [9], given as

k1 = ∂qn
j

∂x
, k2 = ∂(qn

j − 0.5u�tk1)

∂x
, (20)

k3 = ∂(qn
j − 0.5u�tk2)

∂x
, k4 = ∂(qn

j − u�tk3)

∂x
, (21)

qn+1
j = qn

j − u
�t

6
(k1 + 2k2 + 2k3 + k4). (22)

Implicit time-stepping schemes are used because they are generally unconditionally stable, although they require the so-
lution of an elliptic equation at each timestep. The implicit time-centered scheme, which is temporally second-order, is
discretized as

qn+1
j = qn

j − u
�t

2

(
∂qn+1

j

∂x
+ ∂qn

j

∂x

)
. (23)

Fig. 3 shows the effective resolution for second and fourth-order spatial schemes when using leapfrog, Adams–Bashforth,
Runge–Kutta and implicit time-centered time-stepping. The plots end at the Courant number that the schemes become
unstable, and this shows the stability limits of the fourth-order leapfrog scheme and of the Adams–Bashforth schemes for
advection. For comparison, the second- and fourth-order Lax–Wendroff/ADER schemes are also shown. As we use second
and fourth-order spatial order of accuracy the diffusion errors are small and the dispersion errors dominate. Therefore the
effective resolution is almost completely decided by the dispersive errors, and the center and right plots of Fig. 3 are almost
identical. The plot shows how the spatial order dominates the effective resolution, with the second-order spatial schemes
resolving around 25�x and the fourth-order spatial schemes resolving around 8�x (for small Courant numbers). The plot
also shows the sensitivity to the time-stepping method. Similar to the Lax–Wendroff schemes, the effective resolution of the
second-order leapfrog scheme improves as the Courant number approaches unity. The Runge–Kutta time-stepping produces
similar results to the Adams–Bashforth method, except that the Runge–Kutta methods are stable for all shown Courant
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Fig. 4. The maximum resolved wave (in terms of N�x) for ε = 0.01 due to diffusion errors (left), dispersion errors (center), and both diffusion and
dispersion error (right), for two-time-level semi-Lagrangian (SL) schemes with linear, quadratic, cubic and quartic interpolation.

numbers. As the Runge–Kutta method is temporally fourth-order, for the fourth-order spatial schemes there is not the
sudden increase in the dispersion errors around c ≈ 0.4 that can be seen for the spatially fourth-order and temporally
second-order leapfrog scheme. For the implicit time-centered method the effective resolution gets worse as the Courant
number increases. This is due to the accuracy of the time-stepping (second-order for implicit time-centered) degrading with
increased timestep �t .

The Robert–Asselin time filter [29,2] is a method to damp the computational mode associated with the leapfrog scheme.
It is commonly used for models that employ a three-time-level approach such as the Community Atmosphere Model Eu-
lerian (CAM-EUL) spectral transform dynamical core [26]. It is an approximation of the second temporal derivative, and is
discretized as

qn
j = κqn+1

j − (2κ − 1)qn
j + κqn−1

j , (24)

where κ is the filter coefficient. Considering different strength filter coefficients (not shown), the effect of the time-filter is
similar to the explicitly added spatial diffusion as seen in Fig. 2: the time filter can reduce the dispersion errors and can
produce a higher effective resolution than if no filter is used, although a large filter coefficient results in very large diffusion
errors.

3.4. Semi-Lagrangian schemes

Semi-Lagrangian schemes were historically used in dynamical cores that made use of latitude–longitude grids [45].
This was to reduce the impact of the convergence of the meridians at the pole, and allow larger timesteps to be taken.
Semi-Lagrangian schemes are often used for transport in global spectral models, as it is easier to ensure positivity with
semi-Lagrangian schemes than with spectral methods. Recent advances, such as conservative and high-order monotonic
versions [18,48,39], indicate that semi-Lagrangian methods still have a part to play in the next generation of dynamical
cores.

Here we use semi-Lagrangian schemes with no limiting. The semi-Lagrangian schemes can be written in finite-difference
formulation, as given by [24]. For example, the semi-Lagrangian scheme with linear interpolation is given as

qn+1
j = αqn

j−(1+int(c)) + (1 − α)qn
j−int(c), (25)

where α = c − int(c). The formula for quadratic, cubic and quartic interpolation is given by [24].
The effective resolution of semi-Lagrangian schemes using linear, quadratic, cubic and quartic interpolation is shown in

Fig. 4. One of the strengths of the semi-Lagrangian scheme is that it remains stable for long timesteps with c > 1. For this
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reason we show results up to Courant number c = 4, although to be consistent with the other schemes in this paper we
assume that they are only simulated until c = 1, i.e. m = 1/c in (8). The results for c � 1 are identical to those obtained
using the Lax–Wendroff/ADER schemes of order one to four, shown in Fig. 1. For integer Courant numbers the advection is
exact, and therefore all schemes are able to resolve the 2�x wave. For each scheme, the pattern of diffusion and dispersion
errors follows a similar quadratic curve between integer Courant numbers. The magnitude of this pattern decreases as the
Courant number increases, because the simulation is only run to time c = 1.

The results for the semi-Lagrangian scheme with c > 1 are identical to those that can be obtained by running the
Lax–Wendroff/ADER schemes (of order one to four) with a long time-step extension, such as the flux-form semi-Lagrangian
approach of [21]. Note that these schemes are only equivalent for the linear constant velocity advection Eq. (1) that is
considered in our paper.

3.5. Finite-volume schemes

Finite-volume methods contain a number of desirable qualities (such as conservation, ease of applying limiters, and being
a local method) and as such have been used in a number of transport schemes and dynamical cores of GCMs (for example
[20,38]).

The flux form Eq. (2) is numerically solved using fluxes F as

∂q j

∂t
= −

(
F

n+ 1
2

j+ 1
2

− F
n+ 1

2

j− 1
2

)
�x

, (26)

where the fluxes are calculated using subgrid distributions, q̃. The subgrid distributions make use of the cell volumes and
cell edge reconstructions, q j± 1

2
, and the type of distribution determines which finite-volume scheme is being used. For

distributions that are discontinuous at the cell edges a Riemann flux operator is used. For the linear advection equation
(with positive u) this becomes the upwind flux

F j+ 1
2

= uq̃ j

(
x j + �x

2

)
, (27)

and for continuous distributions the flux is given as

F j+ 1
2

= uq j+ 1
2
. (28)

Finite-volume methods have much in common with conservative finite-difference schemes (for example, the ADER
schemes calculate fluxes and can easily be applied to the conservative form or the advective form of the equation), and as
such, for the linear advection equation some finite-volume methods are equivalent to some of the finite-difference schemes
discussed in this paper. For example, the finite-volume method with piecewise constant subgrid distribution is just the
first-order upwind scheme. The fourth-order centered edge reconstruction

q j+ 1
2

= −q j+2 + 7q j+1 + 7q j − q j−1

12
+ O

(
�x4) (29)

becomes the fourth-order approximation of ∂q/∂x given by (17).
To investigate the effective resolution of finite-volume methods we use the second-order and third-order upwind

schemes from [36], with fourth-order Runge–Kutta time-stepping. We also use the unlimited piecewise parabolic method
(PPM) of [3]. PPM uses the fourth-order edge reconstruction (29) to calculate q j+ 1

2
and a parabolic subgrid distribution that

makes the overall scheme third-order accurate. We also show results for both the second and third-order edge reconstruc-
tions (again with the parabolic subgrid distribution). Normally a limiting procedure is applied to make the reconstruction
piecewise and discontinuous at cell edges, so that in each cell qR j = q̃ j(x j + �x

2 ) and qL j = q̃ j(x j − �x
2 ). Here, qL j and qR j

are the left and right edge reconstructions of cell j. In the linear analysis applied in this paper no limiting is used, so that
qR j = qL j+1 = q j+ 1

2
. The flux is then calculated as

F j+ 1
2

= qR j − c

2

(
qR j − qL j −

[
1 − 2c

3

]
(6q j − 3qL j − 3qR j)

)
. (30)

Fig. 5 shows the effective resolution of the above mentioned finite-volume schemes for Courant numbers between 0
and 1. As with the finite-difference methods, the second-order scheme’s effective resolution is dominated by dispersion
errors, whereas the third-order scheme’s effective resolution is dominated by diffusion errors, and the third-order upwind
scheme can resolve smaller scales than the second-order upwind scheme. The Runge–Kutta time-stepping for the finite-
volume schemes produces similar results to the Runge–Kutta time-stepping with finite-difference schemes (Fig. 3). For PPM,
increasing the order of accuracy of the edge reconstruction improves the effective resolution, similar to increasing the or-
der of accuracy of the Lax–Wendroff/ADER schemes. PPM with the third-order edge reconstruction becomes unstable for
c > 0.6. PPM with the fourth-order edge reconstruction outperforms, in terms of effective resolution, all the other finite-
volume methods tested here, for all 0 < c � 1.



494 J. Kent et al. / Journal of Computational Physics 278 (2014) 485–496
Fig. 5. The maximum resolved wave (in terms of N�x) for ε = 0.01 due to diffusion errors (left), dispersion errors (center), and both diffusion and
dispersion error (right), for the second-order upwind with Runge–Kutta 4 time-stepping, the third-order upwind with Runge–Kutta 4 time-stepping, and
the piecewise parabolic method (PPM) with second, third and fourth-order edge reconstructions, finite-volume schemes.

4. Discussion and conclusions

The effective resolution of a numerical scheme is the smallest scale that is fully resolved by that numerical scheme. We
have provided a method to analytically determine the effective resolution of numerical schemes for the linear advection
equation using dispersion relation analysis. The dispersion relation analysis calculates the diffusive and dispersive errors at
each wavenumber, and by defining an appropriate tolerance, we can determine if a wave is resolved or not based on these
errors.

The results show that the spatial order of accuracy appears to dominate a scheme’s effective resolution, and that in-
creasing the spatial order of accuracy of the numerical scheme increases the scheme’s effective resolution regardless of the
time-stepping scheme used. When increasing the spatial order of accuracy of a scheme by one, the greatest improvement is
found for low order schemes (for example increasing from first- to second-order, or from second- to third-order), whereas
the improvement diminishes for higher-order schemes. The results verify the conclusions of [15,40] that fourth-order ac-
curacy appears to be ‘optimal’ in terms of improvement in accuracy relative to computational cost (note that [15] only
considered spatial finite-differences). It can be shown that for some schemes increasing the order of accuracy is more bene-
ficial, in terms of effective resolution, than just doubling the grid resolution. The sensitivity to the order of the time-stepping
scheme is more complex and less predictable. While the Runge–Kutta schemes’ effective resolution is largely independent
of the Courant number, this is not the case for the other time-stepping schemes. The same results are found with the
semi-Lagrangian and finite-volume schemes.

Explicit diffusion, hyper-diffusion, and the use of the Robert–Asselin filter increase the diffusion errors but can reduce
the dispersion errors. This suggests that an optimal balance between diffusion and dispersion errors can increase the effec-
tive resolution of a scheme. This explicit diffusion is fundamentally an ‘error’ as this analysis is applied to the advection
equation at constant velocity, for which there is formally no diffusion. For advection in sheared flows and in dynamical
cores of weather and climate models diffusion is required to model the downscale cascade of certain quantities, and this
physical diffusion also impacts the balance between diffusive and dispersive errors. These conflated roles of diffusion are a
fundamental attribute of numerical advection schemes, and need to be considered not only in design but in analysis of the
performance of the model.

The effective resolution of a numerical scheme is an important point to consider when developing a transport scheme for
a dynamical core. For a GCM using 1◦ ×1◦ resolution, the grid spacing at the equator is approximately 110 km. As shown for
both finite-differences and finite-volumes, a second-order scheme may only fully resolve around 18 − 26�x at low Courant
numbers. This will correspond to the 1◦ GCM being unable to resolve fully features smaller than ∼2000–2800 km. For
models with variable resolution grids, it is possible for the numerical scheme to lose an order-of-accuracy at the change in
resolution [8]. Therefore a second-order scheme on a variable resolution grid might revert to first-order at the resolution
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change, and, as shown in Fig. 1, could find the effective resolution drop by 20�x, possibly negating the benefits of the
variable resolution mesh.

The analysis performed in this paper can be used to assess numerical advection schemes. It also provides robust guidance
in optimizing the choice of spatial resolution, which influences the decisions about computational design and resource
management. For example these measurements of effective resolution may indicate the comparative utility in increasing
grid resolution as opposed to altering the algorithm itself to achieve a higher effective resolution. With regards to the effect
of a chosen timestep, the analysis with this method reveals that the dependence of the effective resolution on the Courant
number is significant. The analysis in this paper can only be applied to linear schemes, and does not inform us directly
about non-linear schemes such as those with flux-limiters. However, this methodology has been modified to obtain similar
measures of effective resolution for non-linear numerical schemes, and this will appear in a future paper. Although the
advection scheme is far removed from a non-linear dynamical core, the inevitable gap between the grid-scale and effective
resolution provides an important insight into the description of uncertainty that is associated with dynamical cores, such as
variable resolution grids, land-water boundaries, steep topography and grid-scale physics.
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