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Philosophers continue to debate both the actual and the ideal roles of values in science. Recently, Eric
Winsberg has offered a novel, model-based challenge to those who argue that the internal workings of
science can and should be kept free from the influence of social values. He contends that model-based
assignments of probability to hypotheses about future climate change are unavoidably influenced by
social values. I raise two objections to Winsberg’s argument, neither of which can wholly undermine
its conclusion but each of which suggests that his argument exaggerates the influence of social values
on estimates of uncertainty in climate prediction. I then show how a more traditional challenge to the
value-free ideal seems tailor-made for the climate context.
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1. Introduction

In a classic paper, Richard Rudner (1953) argued that ethical
values are a required part of the internal workings of science. Since
evidence never establishes a hypothesis H with certainty, scientists
must decide whether the evidence is sufficiently strong to merit
acceptance of H, and this decision reflects judgments about how
bad it would be (in a typically ethical sense) to be mistaken in
accepting or rejecting H. Thus, for example, we would demand
stronger evidence before accepting the hypothesis that a new med-
ical procedure for children is safe than before accepting the
hypothesis that a manufactured lot of shampoo bottles meets de-
sired quality specifications.

In a classic reply, Richard Jeffrey (1956) challenged Rudner’s
conclusion by denying that scientists are in the business of accept-
ing or rejecting hypotheses in the first place. According to Jeffrey,
scientists’ job is to assign probabilities (degrees of belief) to
hypotheses; it is then up to decision makers—with their social,
political and ethical value commitments—to take action or not in
light of those probabilities, that is, to determine whether the prob-
abilities provided by scientists are high enough to warrant various
courses of action. On what we might call a Jeffreyan view, the
internal aspects of scientific research—including the assignment
of probabilities to hypotheses—can and should remain free from
the influence of social values.1

Today, philosophers of science remain divided on the appropri-
ate roles of ethical and social values in science. Some, like Heather
Douglas (2000, 2009), argue that such values are a required part of
the internal workings of science in much the way that Rudner sug-
gested. Others, like Sandra Mitchell (2004), seem to embrace some-
thing much closer to the Jeffreyan view. Recently, Eric Winsberg
(2010, 2012; see also Biddle and Winsberg, 2009) has offered a no-
vel challenge to the Jeffreyan view. He argues that, when it comes to
hypotheses about future climate change, it is infeasible for climate
scientists to exclude the influence of social values when assigning
probabilities. As he puts it: ‘‘Scientists cannot assign probabilities
to hypotheses about future climate change—or, more specifically,
estimate the uncertainties of climate predictions—in a manner that
is free from non-epistemic considerations . . .’’ (2010, p. 119).2

To begin to see what Winsberg has in mind, consider the follow-
ing statement: The probability is 0.90 that global temperature will
rise by between 2 and 3 �C during the 21st century if greenhouse
gas emissions continue at current rates. This statement assigns a
probability to a hypothesis about future warming. It is also a way
s.
n others’’
question
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of expressing uncertainty about how much warming would occur;
instead of reporting that the temperature would definitely rise by,
say, 2.1 �C, an assignment of probability is made to an interval of
change. Winsberg argues that social values unavoidably influence
probabilistic uncertainty estimates like these. What is especially
novel about his argument is its grounding in the practice of com-
plex simulation modeling: assignments of probability to hypothe-
ses about future climate change are influenced by social values, he
argues, because of the way these values come into play in the
building and evaluating of climate models, on whose results the
assignments of probability depend.

The present paper has two main aims: first, to critically evaluate
Winsberg’s model-based challenge to the Jeffreyan view and, sec-
ond, to show how a more traditional set of replies to Jeffrey seems
tailor-made for the climate context. Section 2 provides background
on climate modelling and on uncertainty in climate prediction.
Section 3 presents a distilled version of Winsberg’s argument. Sec-
tion 4 raises two objections to the argument; while neither can
wholly undermine his conclusion that social values have some
unavoidable influence on uncertainty estimates in climate predic-
tion, each suggests that social values exert less of an influence than
he implies. Section 5 revisits a more traditional set of replies to Jef-
frey. Without necessarily endorsing these replies, it is shown that
they dovetail nicely with recent discussions—internal to climate
science—about the estimation of uncertainty in climate prediction.

2. Models, ensembles and probabilities

To understand Winsberg’s argument, we first need to appreci-
ate that most quantitative predictions of future climate change
are made with the help of computer simulation models. These
models are needed in part because the causal processes that shape
the evolution of climate are numerous, nonlinear, and interactive.
They include the transfer of radiation through the atmosphere,
the movement of large-scale weather systems, the formation of lo-
cal clouds and precipitation, ocean currents, the forming and melt-
ing of polar ice sheets, and many more. Not even the most
insightful scientist can expect to foresee, in detail, the spatial and
temporal patterns of climate change that these interacting pro-
cesses will produce in response to rising greenhouse gas concen-
trations. So scientists attempt to represent these processes and
interactions mathematically and then estimate solutions to these
equations (taking small time steps) with the help of computers;
the goal is to simulate how Earth’s climate would change if green-
house gas emissions were to rise at particular rates in the future.

But there is uncertainty about how to build these climate mod-
els in such a way that predictions of future climate change will
have desired accuracy. The uncertainty stems in part from a lim-
ited theoretical understanding of the climate system, but also from
the constraints placed by available computing power—the com-
puter simulation needs to finish running before climate actually
changes, and this means that even physical processes that are
well-understood may need to be represented in a simplified way.
In many cases, it is far from obvious how to make these simplifica-
tions such that predictions with desired accuracy will be produced.

Uncertainty about how to model the climate system is usually
partitioned conceptually into three components. Structural uncer-
tainty is uncertainty about the form that modeling equations should
take. We can think of this as uncertainty about which causal pro-
cesses should be represented in the model and with what sorts of
3 On some definitions, it also includes uncertainty about how these equations should b
4 For further, non-technical discussion of ensembles see also Parker (2006, 2010, 2013)
5 For discussions of methods and examples of results see e.g. Tebaldi & Knutti, 2007, an
6 Winsberg (2010) argued that the influence of social values here tended to result in unce

in the more recent discussion (2012). Here I consider just his argument for unavoidable in
equations.3 Parametric uncertainty is uncertainty about the values of
parameters within a given model structure, for example, about the
numerical value that should be assigned to a parameter representing
the entrainment of air into clouds from the surrounding environment.
Initial condition uncertainty is uncertainty about which numerical val-
ues to assign to model variables at the start of the simulation. When it
comes to future climate change, the question is: how much does this
representational uncertainty matter when it comes to predictions of
future climate change? That is, how do structural, parametric and ini-
tial condition uncertainty translate into predictive uncertainty?

One way to try to get a handle on this predictive uncertainty is
to build and run climate models with different structures, param-
eter values and initial conditions, seeing how their projections of
future climate differ. This is the basic idea behind ensemble climate
prediction studies.4 So far, these ensemble studies have tended to
come in two varieties. In perturbed-physics studies, multiple projec-
tions of future climate are produced using a single set of modeling
equations, but with a different combination of values assigned to
uncertain parameters within the equations on each run (see e.g.
Frame et al., 2009; Murphy et al., 2009). In multi-model ensemble
studies, by contrast, projections are produced using climate models
that differ in the form of some of their equations and often in various
other ways as well (e.g. in their resolution, their numerical solution
methods, their parameter values, etc.); typically, these are models
developed at different modeling centers around the world (see e.g.
Meehl et al., 2007b; Taylor, Stouffer, & Meehl, 2012). In both types
of ensemble study, each model or model version may be run with
a few different sets of initial conditions as well.

How to interpret the sets of projections produced in ensemble
studies is a topic of some debate (see e.g. Parker, 2010; Smith,
2002; Stainforth et al., 2005, 2007). Nevertheless, increasingly
methods are being developed and deployed that attempt to extract
probabilistic information from such sets of projections: they assign
(what appear to be) precise probabilities to future changes in cli-
mate as a function of the distribution of projections from today’s
climate models.5 Such methods, which come in several varieties,
are prime examples of those Winsberg has in mind when making
his argument about the influence of social values.

3. A reconstruction of Winsberg’s argument

With this background, we are ready to consider Winsberg’s
(2012) argument. Here, I present a distilled reconstruction, aiming
to capture the key moves but omitting some of the details6:

P1: State-of-the-art methods for estimating uncertainty about
future climate change assign probabilities to changes in climate
as a function of the distribution of projections from today’s cli-
mate models (pp. 116–118).
P2: The distribution of projections from today’s climate models
has been influenced by past choices made in the course of
model development, such as which physical processes to incor-
porate next and how (pp. 127–128).
P3: Model-development choices like these often are epistemi-
cally unforced, and social values fill the gap, making some
options preferable to others (pp. 124, 130–131).
P4: It is infeasible for scientists to correct for the effects that
these value-influenced choices have on estimates of probability
produced in ensemble studies; there is no Bayesian fix here (pp.
129–130).
e implemented and solved computationally.
.
d Murphy et al., 2009.
rtainty estimates that are biased in particular ways, but that idea was not emphasized
fluence.
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C: State-of-the-art estimates of uncertainty about future cli-
mate change are unavoidably influenced by social values (pp.
131–132).

P1 requires little explication, given the discussion of ensembles
in the preceding section. P2 is also straightforward: if different
choices had been made in the course of building today’s climate
models, then the projections of future climate change that they
produce would be somewhat different. For instance, choosing to
represent a process in one way rather than another will make some
difference to the results. Biddle and Winsberg (2009; see also
Winsberg, 2010, chap. 6) have argued that even the order in which
processes are added to a model makes a difference, as past model-
ing choices to some extent constrain future modeling choices; it
simply may not work to represent a process in our model in a par-
ticular way, given that we have previously chosen to represent
other processes in particular ways.

P3 and P4 are more complex. P3 relies on a distinction between
epistemically forced and unforced choices in model building. This
distinction is not entirely clear in Winsberg’s discussion, but it
seems to work as follows: An epistemically forced choice is one
in which there are decisive, purely epistemic grounds for consider-
ing one model-building option to be better than all other available
options, otherwise the choice is epistemically unforced. P3 asserts
that many choices in the building of climate models are epistemi-
cally unforced, and that social values are what very often (if not al-
ways) lead scientists to prefer some options to others. Winsberg
argues that there are at least two ways that social values exert
an influence here (see e.g. 2012, p. 124).

First, climate scientists may be aware that the available mod-
el-building options strike a different balance of inductive risks7

with respect to a problem or task (e.g. the task of predicting
whether changes in precipitation in a region will exceed some
threshold) and may choose one option in light of its inductive risk
profile. The choice reflects the value judgment that it would be
worse (ethically or socially) to err in one way than in another.
Second, modeling choices may be influenced by decisions to prior-
itize some predictive tasks over others—decisions which are them-
selves often shaped by social values. We prioritize the accurate
simulation of changes in surface temperature, droughts and other
weather extremes, for instance, because they have greater social
and economic importance than many other quantities, e.g. the
average height of the 200mb pressure surface. These prioritization
decisions can influence subsequent choices in model building: gi-
ven particular predictive priorities, we might focus on improving
our representation of one causal process rather than another, or
we might decide that the next process to be added to the model
will be one rather than another.

P4 relates to what Winsberg calls the ‘‘Bayesian response to the
Douglas challenge’’ (BRDC). The Douglas challenge—so named be-
cause it is attributed to Heather Douglas (2000, 2009)—is in effect
a more general version of Winsberg’s P3: doing science often in-
volves epistemically unforced methodological choices whose op-
tions have different associated inductive risk profiles; such
choices must be made on some grounds, and they often are (and
should be) made in light of the judgment that it would be worse,
ethically or socially, to err in one way than in another. According
to the BRDC, this sort of influence on the part of social values can
be screened out or compensated for via expert judgment—we can
and should (on epistemic grounds) factor in the inductive risk
profile of the method used. If a chosen method for detecting the
presence of a disease has a tendency for false positives, for
7 The balance of inductive risks associated with a choice or method usually refers to the
particular sort of inference task.
instance, we can and should take that into account when assigning
probabilities to hypotheses in light of the results we obtain via that
method.

P4 asserts that the BRDC is in practice unavailable in the case of
ensemble climate prediction. According to Winsberg, applying the
BRDC would require that an epistemic agent ‘‘be capable of making
an informed judgment about how every single methodological
choice on which a climate model is built ought to influence his
or her degree of belief in a hypothesis that he or she is evaluating
with the use of that model’’ (2012, p. 130), presumably for each
model involved in the ensemble study. Several factors combine
to make such judgments out of reach: many of the methodological
choices will have been made by other scientists, over the (perhaps
decades-long) history of the model’s development; the impact of a
given choice on the model’s results often will be sensitive to earlier
and later choices; the interactions among choices will be complex
and numerous and thus difficult to untangle, especially for the typ-
ical scientist whose expertise is concentrated in one or two areas,
such as radiation physics (see also ibid, pp. 125–129).

How exactly does Winsberg’s argument present a novel chal-
lenge to the Jeffreyan view? The latter is sometimes characterized
as the view that probabilities can and should be assigned to scien-
tific hypotheses in a way that is free from the influence of social
values. When expressed in this way, it is tempting to think that
the Jeffreyan view requires that probability assignments should
not reflect the influence of social values in any way. But in that
case, the view could be easily dismissed via an argument that
has nothing to do with complex simulation modeling. In particular,
insofar as any assignment of probability to a hypothesis will de-
pend on the state of current knowledge, which in turn will depend
upon what we have found important enough to invest resources
investigating, assignments of probability to scientific hypotheses
will always be influenced by social values. On this interpretation,
we would declare the Jeffreyan view a non-starter, and there
would be no need for Winsberg’s argument.

But this is not the sort of value influence that advocates of the
Jeffreyan view want to deny, nor the sort of influence that Wins-
berg wants to demonstrate. Advocates of the Jeffreyan view no
doubt agree that the state of knowledge at any given time depends
on what we’ve considered important enough to investigate. What
they insist is that social values need not and should not influence
the probabilities that are assigned to hypotheses in light of (or con-
ditional on) what has been revealed by investigations up to now. In
other words, the Jeffreyan view asserts not that social values have
no influence whatsoever in science but rather that the process of
determining or estimating probabilities relative to a body of evi-
dence can and should be insensitive to the social values the inquir-
ers might happen to hold. In more general terms, the Jeffreyan
view asserts that social values shouldn’t influence our assessment
of how evidence bears on hypotheses, even if these values do influ-
ence what evidence is available for us to consider in the first place.

Winsberg presents a novel challenge to the Jeffreyan view by
arguing that, in some cases, state-of-the-art methods for estimat-
ing the probabilities that should be assigned to hypotheses of
interest in light of current understanding are model-based meth-
ods which are unavoidably sensitive to social values. Perhaps in
an ideal Bayesian world our cognitive and computational powers
would be great enough that we would not need to rely on such
methods; we would be able to propagate probabilistic representa-
tions of structural, parametric and initial condition uncertainty to
arrive at assignments of probability to future changes in climate,
without the help of computers and without having to rely on
extent to which that choice or method tends to produce type I vs. type II errors in a
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simplified and somewhat distorted distillations of current knowl-
edge (i.e. climate models). But in the real world—given the limits
of our actual cognitive and computational capacities, as well as
the limits of current understanding of the climate system—this is
not possible.

4. Evaluating Winsberg’s argument

Has Winsberg offered a compelling challenge to the Jeffreyan
view? Two objections to his argument will be discussed here. Nei-
ther will wholly undermine his conclusion that social values have
some unavoidable, model-mediated influence on uncertainty esti-
mates in climate prediction. But each will suggest that his argu-
ment exaggerates the influence of social values.

The first objection concerns P3. Winsberg claims that choices in
the construction of climate models often are epistemically un-
forced. This seems right, especially when it comes to choices re-
lated to the parameterization of sub-grid processes.8 But he also
suggests that very often (if not always) what fills the gap, making
some options in model building preferable to others, are social val-
ues. He supports this claim not with an empirical demonstration that
lots of particular choices were in fact shaped by social values—in-
deed he emphasizes that the motivations for specific choices in the
sometimes decades-long development of climate models are mostly
hidden from our current vantage point—but rather with the deeper
and more sweeping assertion that ‘‘no unforced methodological
choice can be made in a value vacuum’’ (2012, p. 130). He suggests
that the only plausible gap-filling candidates are social values;
otherwise the choices would seem arbitrary (ibid, p. 131). But this
is not the case. It seems clear that such choices can also be influ-
enced or even determined by pragmatic factors.

Suppose a group of climate scientists is further developing their
climate model now that more computing power is available.
Which physical process should they ‘‘add’’ to their model next?
Suppose their choice is epistemically unforced, i.e. they cannot ar-
gue on purely epistemic grounds that one process in particular
should be added next. Must their choice then either be arbitrary
or determined by social values? No. Pragmatic factors can also fill
the gap. For instance, the scientists might already have in hand
some computer code for process P but not for processes Q, R, or
S. Or they might judge that it will be much easier to incorporate
P than to incorporate Q or R or S, given past choices in model build-
ing. Or they might be experts on P but have much less understand-
ing of Q and R and S. Or it might be that a leading modeling group
incorporated P for reasons like those just identified, and now it is
seen as de rigueur for state-of-the-art climate models to include
P. And so on. Indeed, it is plausible that pragmatic factors like these
often influence or even determine model development choices. So
Winsberg needs to work harder to make the case that the influence
of social values here is as pervasive and common as he suggests.

Winsberg may be tempted to reply that the fact that processes
P, Q, R and S are the leading candidates is itself almost surely a
function of social values: if social values hadn’t led scientists to pri-
oritize the accurate prediction of some quantities (e.g. changes in
global mean temperature) rather than others, then they wouldn’t
8 Due to limited computing power, climate models must have relatively coarse spatial
clouds must be represented in a simplified way in terms of larger-scale variables (i.e. par

9 Of course, on longer time scales even processes of the latter type (e.g. various ocean pro
processes.

10 Just to be clear: I mean any influence of social values via the model-development pro
11 Note that this means that there are no ‘‘true’’ single-valued probabilities to be estimat

such single-valued probabilities for hypotheses about future climate change; at best it e
assignment of precise probabilities is almost always artificially precise—Bayesian models th
here can then be expressed as follows: these Bayesian models are too idealized for the pr

12 There are also reasons to think that neither parametric nor initial condition uncertainty
not important for the present discussion.
have narrowed their focus to these processes to begin with. But
even this is not so clear. The narrowing of focus might instead re-
flect non-decisive epistemic considerations. For instance, some cli-
mate system processes, such as the formation of clouds and
precipitation, are thought to influence a broad range of climate
variables in significant ways even on relatively short time scales,
whereas other processes have smaller and/or more localized im-
pact on those time scales; scientists might narrow their focus to
a set of processes of the former type because not including them
(or representing them poorly) can be expected to result in simula-
tions that have significant errors in a wide range of climate vari-
ables.9 No single, top-priority process might be identifiable on
epistemic grounds alone, leaving the choice of which process to
add next unforced, but the narrowing of focus might nevertheless
have been driven by epistemic considerations.

The second objection relates to Winsberg’s focus on methods
that assign precise probabilities to hypotheses about future climate
change. The objection is that this focus is somewhat misplaced: an
argument that scientists cannot estimate ‘‘the uncertainties of cli-
mate predictions’’ in a manner that is free from the influence of so-
cial values ultimately should focus not on methods for producing
precise probabilistic estimates—which are known to be artificially
precise—but rather on methods for producing coarser depictions of
uncertainty, since these coarser depictions can more accurately re-
flect the limits of current understanding. It will be suggested be-
low, however, that any influence that social values exert in the
production of these coarser estimates will be reduced compared
to their influence on precise probabilistic estimates.10

First, though, it is worth explaining why precise probabilistic
estimates of uncertainty about future climate change are artifi-
cially precise. The short explanation is that scientists do not yet
understand the climate system well enough; one must know a
lot to be a position to say with justification that the probability (de-
gree of belief) that should be assigned to a hypothesis is 0.38 rather
than 0.37 or 0.39. Current scientific understanding is insufficient to
constrain expectations to that extent.11 A longer version of the
same explanation can be given in terms of structural uncertainty,
i.e. uncertainty about the form that climate model equations should
take. Scientists are not yet in a position to confidently identify and
represent in their modeling equations all of the physical, chemical
and biological processes that will significantly shape the extent of
climate change in response to increased greenhouse gas emissions.
The importance of some processes and feedbacks is unclear, as is
how to represent others that are known to be important, such as
cloud formation. Moreover, there remains a non-negligible but diffi-
cult-to-quantify risk of ‘‘unknown unknowns’’—causal factors of
which scientists remain unaware but that nevertheless will influence
the extent of climate change significantly. So structural uncertainty
itself cannot be accurately represented with a single probability dis-
tribution (whether this is a distribution over model structures or
over projected changes) and thus neither can uncertainty about fu-
ture climate change, insofar as structural uncertainty is one compo-
nent of it.12

That precise probabilities are overly precise is recognized in
practice as well. Expert groups like the Intergovernmental Panel
resolution. As a consequence, small-scale processes like the formation of individual
ameterized), and it is rarely clear how this can best be done.
cesses) might be extremely important, insofar as they are nonlinearly coupled to other

cess, in the ways suggested by Winsberg.
ed here, nor to be distorted by social values. Current knowledge simply doesn’t entail
ntails something less precise. Some Bayesians epistemologists might reply that the
at use precise probabilities are known to be idealized models. Fair enough. The point

esent context.
can be accurately depicted with a single probability distribution, but exploring this is



Table 1
IPCC AR5 Likelihood Scale.

Term Probability

Virtually certain 99–100%
Very likely 90–100%
Likely 66–100%
About as likely as not 33–66%
Unlikely 0–33%
Very unlikely 0–10%
Exceptionally unlikely 0–1%

Table 1. Adapted from Mastrandrea et al. (2010, Table 1).
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on Climate Change (IPCC), for instance, do not report uncertainties
about future climate change—or even about most other climate-re-
lated hypotheses—in the language of single-valued probabilities,
but rather in less precise terms (see IPCC, 2007). The IPCC’s recent
‘‘Guidance Note . . .on the Consistent Treatment of Uncertainties’’
(Mastrandrea et al., 2010) emphasizes that IPCC authors should
‘‘evaluate and communicate uncertainty at the appropriate level
of precision’’ (p. 2) and that the appropriate level will vary with
the finding or hypothesis under consideration, depending on the
evidence available.13 According to the guidance note, where evi-
dence is very limited, uncertainty may be more appropriately ex-
pressed in qualitative terms and, moreover, even when
quantitative expressions of uncertainty are justified, an appropriate
expression may take the form of an imprecise (or interval) probabil-
ity specification (ibid, p. 3). In some cases, there may be ‘‘sufficient
information’’ to justify an interval that is relatively narrow (e.g.
90–95% probability), but in many cases the interval probability
assignment may need to be rather broad, with bounds that are them-
selves somewhat fuzzy/uncertain (ibid). The guidance also provides
some ‘‘calibrated language’’—it relates a set of terms to particular
(fuzzy) probability intervals—to promote consistency throughout
the report (see Table 1). Accordingly, if a finding or hypothesis is
characterized as likely by the IPCC experts, this indicates an interval
probability assignment of (approximately) 0.66–1.0.14

Fig. 1 demonstrates an application of such fuzzy, interval proba-
bilities from the previous IPCC assessment report (IPCC, 2007). For
each scenario shown, the IPCC experts deemed it likely that the ac-
tual temperature change would fall within a range extending from
40% below the mean of projections from state-of-the-art models to
60% above that mean. That is, they concluded that the hypothesis
that the temperature change would be in that range could be
assigned an imprecise probability of at least 0.66.15 The discussion
associated with the figure suggests that this uncertainty estimate
was based on a number of relevant considerations, including the sev-
eral ensemble studies whose results are also depicted in the figure, the
experts’ beliefs about the limitations of those studies (e.g. limitations
in their treatment of carbon cycle uncertainties), as well as the experts’
broader physical understanding of the climate system (see Meehl
et al., 2007a, p. 810). The details of the process by which the specified
ranges were determined to be likely, however, were not given.16

Unfortunately, such details often are omitted, making it difficult
to evaluate the procedures used. In fact, at present, it is not entirely
clear what the best-available methods for arriving at coarser esti-
mates of uncertainty regarding future climate change are or could
be. Nevertheless, whatever their details turn out to be, we can ex-
pect that they will prompt scientists to take into account all rele-
vant data/results as well as any recognized limitations (i.e.
biases, shortcomings, etc.) of the studies in which those data/re-
sults were produced. In effect, they will include an analogue of
the move called for by the BRDC, but with more flexibility—they
will require scientists to characterize the limitations of their evi-
dence-gathering methods, but they will not require scientists to
do so in the language of single-valued probabilities. This analogue
of the BRDC may be within reach, even when the traditional BRDC
is not. For instance, scientists might be able to articulate good rea-
sons for considering it unlikely (i.e. probability 6 approximately
0.33) that the change in global mean surface temperature during
13 This guidance note is for the Fifth Assessment Report (AR5), which is still being drafted
Assessment Report (AR4).

14 Note that this does not mean that the experts assign a particular probability somewhere
any one of the probability values over the others in this range.

15 It is noteworthy that, not infrequently, the ‘‘likely’’ range of temperature change for a s
precise probability of 0.90. This is readily seen in Fig. 1: the 5–95% probability bounds from
are contained entirely within the associated wide grey bar.

16 The guidance provided for the AR5 emphasizes the importance of giving a traceable ac
Mastrandrea et al., 2010, p. 2).
the 21st century would be more than 2 �C outside the range pro-
jected by a particular ensemble of today’s models, even if they
are not in a position to say exactly how the distribution of results
from those models would have been different if alternative (rea-
sonable) choices had been made in the course of model develop-
ment. Their reasons might appeal to basic physical
understanding of the climate system, the performance of the mod-
els in simulating past climate changes, etc. Justification for this le-
vel of discrimination/precision in characterizing uncertainty might
well be possible, even when it is not possible for much more re-
fined discriminations.

It is now perhaps easier to see why, even if social values some-
times do come into play in the model development process in the
ways suggested by Winsberg, the influence of those values on esti-
mates of uncertainty will be reduced when coarser estimates are gi-
ven. The influence will be reduced insofar as choices in model
development will less often make a difference to the uncertainty
estimates produced. Whereas any change to the distribution of
modeling results in an ensemble study will change the single-val-
ued probabilities estimated as a function of that distribution
(assuming no fortuitous cancelation in the effects of the changes
to the distribution), coarser estimates will be less sensitive to such
changes, often much less so. Consider, for instance, the IPCC catego-
ries in Table 1. Even if projections from today’s models for a partic-
ular quantity X were somewhat different, this would not
necessarily move a hypothesis about X from one category to an-
other, e.g., from likely to very likely. Indeed, given the recognized
limitations of both today’s climate models and the design of today’s
ensemble studies (see e.g. Parker, 2010; Tebaldi & Knutti, 2007),
small or even moderate changes in the distribution of such projec-
tions should not have much impact in uncertainty analyses, at least
not for many quantities; granting such impact would indicate a fail-
ure to appreciate those limitations.

5. A more traditional reply?

Having examined Winsberg’s model-based challenge to the Jef-
freyan view, it is worth noting that a more traditional reply to Jef-
frey seems almost tailor-made for the discussion surrounding
uncertainty estimates in climate prediction. This more traditional
reply—outlined by Rudner (1953) and Douglas (2009) and oth-
ers—focuses on second-order uncertainty and is untouched by
the move from precise probabilistic to coarser uncertainty
estimates.
at the time of this paper’s writing. A guidance note was also provided for the Fourth

in the range 0.66–1.0 but rather that current knowledge does not allow them to favor

cenario was broader than the ranges to which individual ensemble studies assigned a
a number of ensemble studies are indicated by vertical lines, and many of these lines

count of the evaluation of evidence that led to a particular uncertainty estimate (see



Fig. 1. Projections and uncertainties for global mean temperature change in 2090–2099 relative to the 1980–1999 average, under several emission scenarios and from
numerous studies. The 5–95% ranges from probabilistic studies are indicated by solid vertical lines. The IPCC ‘‘likely’’ ranges are indicated by the wide grey bars. (Reprinted
from Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,
Figure 10.29. Cambridge University Press.)
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The reply goes roughly as follows: Estimates of uncertainty are
themselves always somewhat uncertain; any decision to offer a
particular estimate of uncertainty implies a judgment that this sec-
ond-order uncertainty is insignificant/unimportant; but such a
judgment is a value judgment, as it is concerned with (among other
things) how bad the consequences of error (inaccuracy) would be;
hence even decisions to offer coarser uncertainty estimates at least
implicitly reflect value judgments (see e.g. Douglas, 2009, p. 85). A
variation on this reply argues not just that uncertainty estimates
always implicitly reflect value judgments but also that scientists
ought to explicitly consider how bad the consequences of offering
an inaccurate depiction of uncertainty would be and are remiss if
they fail to do so (see ibid, chap. 4). Douglas (ibid.), for instance, ar-
gues for the latter by appeal to agents’ general moral responsibility
to consider the consequences of their actions.

These arguments are provocative in their own right and merit
further examination. We might wonder, for example, whether it
is possible to give an account of ‘‘doing the best one can’’ in gaug-
ing and representing one’s uncertainty (including perhaps one’s
second-order or even higher-order uncertainty) such that, if one
succeeds in ‘‘doing the best one can’’, then one does not have any
further moral obligation to consider the consequences of error/
inaccuracy in one’s uncertainty estimates. However, this and other
ways of trying to resist the traditional reply will not be explored in
any detail here.17 Instead, the aims of this section will be more mod-
est: first, to show briefly how the traditional reply seems to dovetail
with recent discussions—internal to climate science—concerning the
offering of precise probabilistic estimates of uncertainty and, second,
to draw attention to some more general issues connected with these
discussions and debates in the climate context.

As noted above, the use of ensemble methods that deliver
(what appear to be) precise probabilistic uncertainty estimates
is increasingly common. In some cases, these methods are ap-
plied with the goal of informing real-world decision makers
who are trying to plan for future climate change (see e.g. Murphy
et al., 2009). Some climate researchers, however, have suggested
that providing these precise probabilistic uncertainty estimates is
inappropriate, first and foremost because current understanding
is insufficient to warrant such precision, but in addition because
17 At least two philosophers have expressed doubt that the traditional reply is even a le
action. Winsberg (personal communication, 4 May 2013) argues that worries about second
always do have precise degrees of belief, which can be revealed by their betting behavior. W
his assumption that individuals always have precise degrees of belief.

18 The latter concerns have been expressed more often in talks and in informal discussio
of the adverse consequences that might result from offering
overly precise estimates.18 The possible adverse consequences that
have been identified include both a loss of credibility for climate
science and unnecessary harm to human populations, the latter
as a result of decision makers taking at face value these probabil-
ities and making poorer decisions than they would have made
with coarser estimates that more accurately reflect the limits of
current understanding. This at least suggests that some parties to
the discussion not only share Douglas’s view that, before offering
uncertainty estimates, scientists ought to consider the conse-
quences of inaccuracy but, in addition, believe that when it comes
to expressing uncertainty about future climate change there are
epistemically (and perhaps ethically) better options than precise
probabilities.

A closer look reveals that at least some studies producing (what
appear to be) precise probabilistic uncertainty estimates do explic-
itly acknowledge the existence of second-order uncertainty, but
they nevertheless give confusing advice regarding the proper inter-
pretation of study results. For instance, the extensive report
accompanying one prominent ensemble study includes the follow-
ing guidance:

‘‘Probabilistic projections, although they are designed to quan-
tify uncertainty, require us to make a number of assumptions
in their development, and hence they are themselves uncer-
tain. . . .what may be an unacceptable uncertainty for one user
may be quite acceptable for another application. However, as
a general guideline we suggest that users should be able to
use the distribution from the 10% to the 90% probability levels,
but not outside this range, although data covering the full range
is available. For some variables the limits may be more strin-
gent than this’’ (Murphy et al., 2009, p. 92).

This gives the impression that users can take roughly at face value
much of the probabilistic information produced in the study, which
does not sit well with acknowledgements elsewhere in the report
(e.g. p. 34) that some significant sources of uncertainty have not
been taken into account.

In more general terms, the source of the difficulty here seems to
be that sometimes experts are willing to offer uncertainty
gitimate reply to Jeffrey. Mitchell (2004) sees a problematic conflation of belief and
-order uncertainty would be moot for Jeffrey, insofar as Jeffrey insists that individuals
insberg’s model-based argument is intended to create trouble for Jeffrey even granting

n than in print, but see e.g. Stainforth et al. 2007 and Smith 2009.
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estimates that they nevertheless are not willing to fully own, i.e.
that they would agree are (in one or more ways) inaccurate depic-
tions of the extent to which current understanding can constrain
their expectations about future climate change (see also Parker,
2010; Rougier & Crucifix, 2012; Winsberg, 2012). In the climate
context, this is likely occurring in part because, while methods
for producing (overly) precise probabilistic uncertainty estimates
are available, implementable, and deliver quantitative results in a
familiar form, methods for producing coarser estimates with the
help of expert judgment remain in their infancy, are unfamiliar,
and may be perceived as lacking in rigor. Thus, even if it is recog-
nized that uncertainty about future climate change would be more
accurately characterized with some or other coarser estimate, it
may seem easier to apply existing methods that deliver precise
probabilities. Further work is needed on how to handle situations
in which the ostensible results of an uncertainty estimation study
are not ones that the researchers conducting the study can fully
own and, in the bigger picture, how to more easily conduct studies
that do allow for ownership of results.19

6. Conclusions

Winsberg has opened an important discussion regarding the
extent to which social values are operating in the ‘‘nooks and
crannies’’ (Winsberg, 2012, p. 130) of complex simulation mod-
eling. This paper raised two objections to his argument that so-
cial values unavoidably influence estimates of uncertainty about
future climate change. First, the argument overlooks the possibil-
ity (indeed the plausibility) that pragmatic factors often deter-
mine epistemically unforced choices in model development; it
need not be social values that ‘‘fill the gap’’ when making such
choices. Second, the argument’s focus on precise probabilistic
uncertainty estimates is somewhat misplaced since, given the
limitations of current understanding, uncertainty about future
climate change is more appropriately depicted with coarser esti-
mates. Moreover, we can expect that coarser estimates will be
less sensitive to any influence that social values have via the
model-development process. Neither of these objections shows
Winsberg’s conclusion to be mistaken, but together they suggest
that, if there is some unavoidable influence of social values (via
the model development process) here, it is not as pervasive as
Winsberg’s argument implies.20

Winsberg’s model-based challenge to the Jeffreyan view is a no-
vel one. The discussion revealed, however, that debate surrounding
the estimation of uncertainty in climate prediction—with its high-
lighting of second-order uncertainty and its concern about the neg-
ative consequences of offering erroneous/inaccurate uncertainty
estimates—also hearkens back to earlier replies to Jeffrey given
by Rudner, Douglas and others. In doing so, it calls attention to
the fundamental issue of ownership in uncertainty estimation:
we want methods for estimating and representing uncertainty that
accurately communicate the limits of current knowledge. But
whether such methods are within reach in the case of climate pre-
diction, what they might be like in their details, and even what
would count as accurate enough, remains to be seen.
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