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Ensemble modeling, uncertainty
and robust predictions
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Many studies of future climate change take an ensemble modeling approach in
which simulations of future conditions are produced with multiple climate models
(or model versions), rather than just one. These ensemble studies are of two main
types—perturbed-physics and multimodel—which investigate different sources of
uncertainty about future climate change. Increasingly, methods are being applied
which assign probabilities to future changes in climate on the basis of the set of
projections (the ensemble) produced in a perturbed-physics or multimodel study.
This has prompted debate over both the appropriate interpretation of ensembles
as well as how best to communicate uncertainty about future climate change to
decision makers; such communication is a primary impetus for ensemble studies.
The intuition persists that agreement among ensemble members about the extent
of future climate change warrants increased confidence in the projected changes,
but in practice the significance of this robustness is difficult to gauge. Priority topics
for future research include how to design ensemble studies that take better account
of structural uncertainty, how to weight ensemble members and how to improve
the process by which ensemble studies are synthesized with other information in
expert assessments. © 2013 John Wiley & Sons, Ltd.

How to cite this article:
WIREs Clim Change 2013, 4:213–223. doi: 10.1002/wcc.220

INTRODUCTION

Today, many studies of future climate change
take an ensemble modeling approach in which

simulations of future conditions are produced with
multiple climate models (or model versions), rather
than just one. The need for multiple models stems
from uncertainty about how to represent the climate
system such that accurate projections of future climate
change on global and regional scales will be produced.
There are two main reasons for this uncertainty. First,
while much has been learned about the climate system,
some processes that shape the evolution of climate still
are not well understood. Second, limited computing
power constrains how processes can be represented in
climate models. Subgrid processes like convection, for
instance, must be represented in terms of larger-scale
variables in a simplified way; often it is unclear which

∗Correspondence to: parkerw@ohio.edu

Department of Philosophy, Ohio University, Athens, Ohio, USA

Conflict of interest: The authors have declared no conflicts of
interest for this article.

equations, and which parameter values within those
equations, would be best.

Even as ensemble studies of future climate
change become increasingly common, questions
remain regarding the interpretation of their results.
What exactly does the set of projections produced
in an ensemble study tell us about current uncer-
tainty about future climate change? Can ensembles
inform us of the probabilities that we should assign to
future changes in climate? Are robust projections from
today’s ensemble studies especially trustworthy? Such
questions continue to prompt discussion and debate,
in part because their answers have importance beyond
the bounds of climate science: far-reaching mitigation
and adaptation decisions may be influenced by what
is learned about future climate change from ensemble
studies.

This article provides an introduction to ensemble
modeling and its use in investigating uncertainty about
future climate change. The second section provides
a brief historical discussion of ensemble modeling.
The third section identifies and distinguishes two
main types of ensemble study: perturbed-physics
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and multimodel. The fourth section discusses the
nature of the uncertainty at issue as well as
different approaches to quantifying this uncertainty
with the help of ensembles; both probabilistic
and nonprobabilistic depictions of uncertainty are
discussed. The fifth section considers the significance
of robust projections from ensemble studies, arguing
that in general their significance is unclear. The sixth
section briefly explores the value of ensemble studies
in political and public spheres, highlighting their role
in communicating uncertainty to decision makers.
Lastly, some priority research areas are identified.

HISTORY

The ensemble approach first emerged in response
to the discovery that atmospheric models display
chaotic behavior.1–3 This discovery made untenable
the assumption that small errors in initial conditions
would make only small differences in the weather
forecasts produced. Running a forecast model with
slightly different sets of initial conditions provided a
means of exploring the sensitivity of the day’s forecast
to small errors and uncertainties in the analysis; the
greater the spread of the ensemble of simulations
produced, the greater the sensitivity, and the larger
the recognized uncertainty about future conditions.
By the early 1990s, both the National Center for
Environmental Prediction in the United States and
the European Center for Medium Range Weather
Forecasting in the United Kingdom were employing
this ensemble approach operationally, developing
distinctive methods for selecting alternative sets of
initial conditions.4

Since then, the ensemble approach in weather
forecasting has become increasingly sophisticated4,5

and has expanded to include more than just variation
in initial conditions. For instance, some operational
forecasting centers now also vary the values assigned
to model parameters as well as the way particular
processes (e.g., convection) are represented.6 This
reflects the fact that there is not only uncertainty about
the initial conditions from which a weather forecast
should be generated, but also uncertainty about how
to model the atmosphere—within the constraints of
today’s computing power—such that highly accurate
weather forecasts will be produced. Running different
models and model versions, in combination with
different sets of initial conditions, is a way to
begin to take account of the latter uncertainty. The
spread of an ensemble of simulations produced in
this way provides a more comprehensive estimate of
uncertainty about future conditions than the spread
that is found when only initial conditions are varied.

Still, there is no guarantee that observed conditions
will fall within the ensemble spread. In fact, in
practice today’s ensembles tend to be underdispersive:
observed weather conditions not infrequently fall
outside the range defined by the spread of the forecast
ensemble.5,7,8

In the climate context too, the ensemble
approach took off in the 1990s, but serving a wider
range of purposes. For instance, ensembles consisting
of very long unforced simulations from different
climate models were produced and analyzed to
estimate the climate system’s internal variability, that
is, the variability in conditions that occurs even in the
absence of external forcing.9–11 Estimates of internal
variability are important for detection and attribution
studies but are difficult to obtain from observations.
The ensemble approach was also pursued with the
goal of learning why existing models disagree in some
key aspects of their performance, in the hope that
this would facilitate both model improvement and
better understanding of climate processes. To this end,
in 1989 the Program for Climate Model Diagnosis
and Intercomparison (PCMDI) was established at
Lawrence Livermore National Laboratory in the
United States. Beginning with the Atmospheric Model
Intercomparison Project (AMIP) in 1990, PCMDI
has helped to coordinate model intercomparison
projects (MIPs) in which participating modeling
groups each perform a similar suite of simulation
experiments and then deposit results in a shared
database. Under the auspices of PCMDI and
other scientific organizations, MIPs with various
scientific aims have since been conducted—additional
projects include CMIP, PMIP, SMIP, C4MIP,
CFMIP, GeoMIP, etc.—each producing ensembles
that subsequently undergo extensive analysis by the
research community.12–15

Some phases of these MIPs, including the third
and fifth phases of Coupled Model Intercomparison
Project (CMIP), known as CMIP3 and CMIP5, have
been designed to support research relevant for IPCC
scientific assessments of climate change.16,17 This
includes detection and attribution research, as well
as studies of future climate change. In support of
the latter, more than a dozen modeling groups
participating in CMIP3 produced simulations of
future conditions under specified emission scenarios
and deposited results for a subset of variables in
a public online database managed by PCMDI. These
results helped to inform estimates of uncertainty about
future climate change in the IPCC’s Fourth Assessment
Report (see below).18 CMIP5, currently underway, is
generating ensembles that will inform the IPCC’s Fifth
Assessment in a similar way.
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As the examples of CMIP3 and CMIP5 illustrate,
ensemble studies are sometimes undertaken as a means
of investigating uncertainty about future climate
change. In fact, over the last decade, this has become
perhaps the most prominent use of ensembles in the
climate context. Ensemble studies—including both
MIPs and other types of study—are now the primary
means by which uncertainty about future climate
change is investigated in a quantitative way.

TYPES OF ENSEMBLE
In studies of future climate change, two types of
ensemble are commonly distinguished: perturbed
physics and multimodel. Ensembles of both types
consist of multiple simulations of future climate under
similar forcing conditions. They differ, however, in
what is varied among the models used to generate
the simulations and thus in the sources of uncertainty
about future climate change that are explored.

Perturbed-physics studies explore how climate
change projections are impacted by parametric uncer-
tainty, that is, uncertainty about the values that
should be assigned to a climate model’s parameters.a

Perturbed-physics ensembles are produced by running
multiple versions of a single climate model, where
each version incorporates a different set of parame-
ter values. Usually, the parameter values that define
a model version are chosen from ranges considered
plausible on the basis of expert judgment.b For simple
and intermediate-complexity climate models that are
computationally inexpensive to run and that have a
relatively small number of parameters, thousands of
combinations of parameter values, chosen via formal
sampling procedures, can be tried.19–21 This is out of
reach with state-of-the-art climate models, which have
on the order of a hundred uncertain parameters and
require significant computing time to complete even a
single run.

In response to this computational roadblock, at
least two alternative approaches have developed. The
climateprediction.net project22–24 takes a distributed
computing approach, relying on donated idle-
processing time on a large number of ordinary
home computers; with the help of the public, a
climateprediction.net experiment can run thousands
of versions of a relatively complex climate model (see
Figure 1). A second type of approach, used to produce
the UKCP09 regional climate change projections for
the United Kingdom, runs a limited number of versions
of a relatively complex or even state-of-the-art climate
model and then uses statistical methods (emulators) to
estimate the set of projections that would be produced
if more comprehensive sampling of parameter
uncertainty in the model could be performed.25–27
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FIGURE 1 | Projected global warming under the A1B emission
scenario, relative to 1961–1990 mean temperature. Results are from
more than 2000 ensemble members from more than 800 model versions
in the climateprediction.net BBC perturbed-physics study. Darker
shading indicates better fit with observational data. The black line
indicates results from observational data. The dark blue lines indicate a
‘likely’ range (66% confidence interval) from the ensemble (see Ref 19
for details). Red bars indicate the ‘likely’ ranges (66% confidence
ranges) specified by IPCC experts18 for around 2050 and 2080.
(Reprinted with permission from Ref 24. Copyright 2012 Nature
Publishing Group).

Multimodel studies employ more than one
climate model and investigate how climate change
projections are impacted by structural uncertainty,
that is, uncertainty about the form that modeling
equations should take and how they should be solved
computationally. In multimodel studies, not all of the
models have the same dynamical equations; some of
the models might include representations of climate
system processes that other models in the study do
not yet include, or the models might differ in the
types of parameterization schemes they employ, etc.
Beyond this, there may be differences in parameter
values, spatiotemporal resolution, numerical methods
and computer hardware as well. Thus far, multimodel
studies have employed existing climate models, and
variations thereon, rather than building new sets
of models from scratch for purposes of the study.
The most ambitious multimodel studies conducted
to date are CMIP3 and CMIP5, mentioned above.
CMIP5, still underway, has collected results from
approximately 60 models from nearly thirty modeling
centers/groups around the world (though not all
experiments are run with each model).28

To summarize, perturbed-physics studies inves-
tigate how projections are impacted by parametric
uncertainty, and they do so by running a single
climate model with alternative sets of parameter
values, in some cases sampling these alternatives in
an extensive and systematic way; multimodel studies
investigate how projections are impacted by structural
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uncertainty, but they typically do so in an unsystematic
way, by producing projections with a set of existing
climate models rather than a set carefully designed to
probe this uncertainty.

Both perturbed-physics and multimodel studies
often include a limited investigation of the impacts of
initial condition uncertainty as well: each model or
model version is run more than once under a chosen
emission scenario, using different initial conditions on
each run. The relative contribution of initial condition
uncertainty to the ensemble spread varies with the time
scale, spatial scale, and quantity considered; it tends to
be small for long-term changes in global temperature
in scenarios with significant forcing, for instance,
but large for short-term changes in precipitation.29,30

Nevertheless, ensemble studies have tended to focus
on parametric and structural uncertainty, whether or
not this is justified.

Studies that combine the multimodel and
perturbed-physics approaches in a systematic way—
varying both parameter values and model structure
according to a careful experimental design in order
to thoroughly sample or bound uncertainties about
future climate change—have not yet been conducted.
Doing so would require a tremendous amount of
computing power. But there are deeper obstacles
as well. For while there are various approaches to
sampling a space of parameter values, it is not clear
what it would mean to sample the relevant space of
alternative model structures, if that space could be
specified.26,31,32

QUANTIFYING UNCERTAINTY
ABOUT FUTURE CLIMATE CHANGE

In general terms, uncertainty is a lack of knowledge.
There is a lack of knowledge about 21st century
climate change (and beyond) in the sense that it is
unclear whether particular changes in climate, such as
large increases in decadal mean temperature in specific
regions, will occur. This uncertainty about future
climate change stems both from uncertainty about
future levels of greenhouse gas emissions and other
external forcings, known as scenario uncertainty, and
from uncertainty about how the climate system would
respond to a given set of forcings, known as response
uncertainty.c Climate science investigates response
uncertainty—uncertainty about how climate would
change in the future under a specified scenario.d

Response uncertainty is primarily epistemic in
origin: it stems mainly from uncertainty (lack of
knowledge) about how to build adequate predictive
models of the climate system, rather than from the
climate system’s having some irreducibly statistical

or indeterministic character (an ontic source of
uncertainty).e Multimodel and perturbed-physics
studies investigate response uncertainty by producing
projections of future climate change using alternative
parameter values, modeling equations and initial
conditions, as described above. But what exactly do
these ensembles reveal about response uncertainty?

One view is that an ensemble indicates a lower
bound on response uncertainty; the spread of an
ensemble defines a range of changes (e.g., in global
mean surface temperature) that cannot yet be ruled
out—a ‘nondiscountable climate change envelope’.33

This interpretation requires that each model or model
version whose projection is included be one that is
plausibly adequate for projecting the changes of inter-
est, and it assumes that magnitudes of change in
between those projected by the ensemble members
also are plausible. Suppose, for example, that each of
several state-of-the-art climate models in a multimodel
study is plausibly adequate for projecting 21st century
changes in global mean surface temperature under an
emission scenario. Then, on this view, if the changes
projected by these models range from 1.2 to 3.7◦C,
this range will define a lower bound on uncertainty
about the temperature change; a change between 1.2
and 3.7◦C remains plausible for that emission sce-
nario, but no conclusions are drawn about changes
outside that range.

Why would the spread of projections pro-
vide only a lower bound on response uncertainty?
Because neither multimodel nor perturbed-physics
studies explore structural, parametric and initial con-
dition uncertainty in a comprehensive way. Multi-
model ensembles like those produced in the CMIP
projects, for instance, are to a large extent ‘ensembles
of opportunity’18,34—produced with existing state-of-
the-art models and only insofar as modeling groups
are willing to participate; they are not designed to
systemically sample or bound uncertainties but rather
are more like a collection of best guesses.34 Perturbed-
physics studies sometimes explore parametric uncer-
tainty quite extensively, but they typically do not
account for structural uncertainty at all, insofar as they
vary parameter values within a single climate model.

Nevertheless, increasingly, ensemble studies do
not simply report a range of future changes in cli-
mate that cannot yet be ruled out, but instead deliver
what appear to be precise probabilistic estimates
of uncertainty.18,35 That is, from the set of pro-
jections produced in the ensemble study, infer-
ences are made about which changes in climate
can be assigned more or less probability under the
associated emission scenario (see Figure 2). Numer-
ous methodologies20,21,25–27,36–46 for producing such
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probabilities have been developed, many of which cast
this inference task in Bayesian terms. It is beyond the
scope of this article to review these methodologies,
most of which are fairly technical. A fundamental
assumption of many of them is that changes projected
by models or model versions that better simulate past
climate (on chosen metrics of performance) should be
assigned more probability than changes projected by
models or model versions that simulate past climate
less well.

It is important to understand the nature of the
probabilities produced. They are meant to indicate
the degree of belief (or confidence) that one should
have that a particular change in climate would occur
under an emission scenario, given current information.
They are not meant to indicate how frequently the
change would occur in a hypothetical series of exper-
iments in which earth-like planets were subjected to
the conditions of the emission scenario. For example,
a probability of 0.7 would indicate that one should

be 70% confident, or have a degree of belief of 0.7,
that the change would occur. Researchers sometimes
emphasize that today’s ensemble studies only produce
‘estimates’ of these probabilities. This is because the
studies do not take into account all sources of uncer-
tainty (and error) and/or because they rely on other
questionable or simplistic assumptions. For instance,
a study might fail to take into account uncertainty
associated with climate system processes not repre-
sented in any of the models used (e.g., methane cycle
feedbacks), or it might assume that projections by
ensemble members are distributed around truth, each
with some random error.

Especially when it comes to communicating
uncertainty to decision makers, the crucial question
seems to be whether these estimated probabilities
would be only slightly different were all sources of
uncertainty taken into account, the simplistic assump-
tions made more realistic, etc. Considering this ques-
tion carefully, however, casts doubt on the very idea
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FIGURE 2 | Changes in precipitation (%) at the 10, 50 and 90% probability levels in different UK regions by the 2050s as estimated by UKCP09.
Changes are relative to the 1961-1990 mean for each region, under a medium emission scenario. Wider ranges indicate the lowest and highest values
of change seen across three emission scenarios and all three probability levels. (Reprinted with permission from Ref 25. Copyright 2009 Crown
Copyright).

Volume 4, May/June 2013 © 2013 John Wiley & Sons, Ltd. 217



Focus Article wires.wiley.com/climatechange

that response uncertainty can be accurately repre-
sented with precise (i.e., single-valued) probabilities,
at least for many changes in climate. This is easi-
est to see in connection with structural uncertainty.
Perturbed-physics studies typically do not take any
account of structural uncertainty, and multimodel
studies do so in a limited and unsystematic way.
How would the distribution of modeling results, and
thus the probabilities estimated in these studies, be
different if structural uncertainty (and error) were
taken into account more fully? The answer is itself
significantly uncertain, because it is unclear which
additional (not-yet-constructed) models would need
to be included, much less what the projections from
these models would be. This suggests that response
uncertainty would be more accurately described using
interval probability specifications or in some other
way, rather than with precise probabilities.32,47

Figure 3 illustrates a shift from single-valued
probabilities to interval probability specifications.
Most of the solid vertical lines in the figure
indicate ranges of global mean temperature change
to which particular ensemble studies assigned a
precise probability of 0.9 for a specified emission
scenario. The uncertainty estimate ultimately given
by the IPCC in its Fourth Assessment Report,18

however, is denoted by the associated wide gray
bar in the background, which indicates the range
to which the IPCC assigned an interval probability of
at least 0.66 on the basis of expert judgment. That is,
after considering not only the available results from
ensemble studies, but also the known or suspected
limitations of these studies as well as other available
information, the IPCC experts reported that their

confidence (or degree of belief) was at least 66%
that the temperature change would be in that range.
Note that this ‘likely’ range, which was defined by
adding 60% and subtracting 40% from the mean
of the temperature changes projected by the CMIP3
models, is broader than many of the ranges to
which individual ensemble studies assigned a precise
probability of 0.9. This suggests that the IPCC experts
judged that, had structural, parametric, and initial
condition uncertainty been more thoroughly explored
(or accounted for) in these ensemble studies, the range
of projected changes would have been wider, though
how much wider cannot be precisely specified.

Thus, at least three ways of connecting ensem-
bles with conclusions about response uncertainty have
emerged. One approach takes the ensemble spread to
define a lower bound on response uncertainty, indi-
cating changes in climate that cannot yet be ruled
out; no probabilities are assigned. A second approach
uses formal methods to assign single-valued proba-
bilities to changes in future climate on the basis of
an ensemble of projections; these probabilities are
described as ‘estimates’ conditional on the models
and methods used. A third approach views ensem-
ble studies as imperfect investigations of response
uncertainty whose results should be considered along-
side all other available information; this approach,
which often relies on expert judgment, recognizes
that response uncertainty is often ‘deeper’ than single-
valued probabilities would imply and, in those cases,
characterizes response uncertainty using interval prob-
ability specifications or in other ways (e.g., sets of
probability density functions, order of magnitude
estimates, etc.).
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In principle, these three approaches need not
conflict with one another in either their assumptions or
their products: a lower bound defined by the ensemble
spread can be consistent with a precise probabilistic
‘estimate’ of uncertainty obtained using formal meth-
ods, which in turn can be consistent with a charac-
terization of uncertainty in terms of an interval prob-
ability specification that is reached by synthesizing
ensemble results with other information. In practice,
however, they often are seen as competing approaches,
and there is disagreement about the reasonableness of
their assumptions, the limitations of their methodolo-
gies and the extent to which their products are infor-
mative and useful for decision makers (see below).

ROBUST PREDICTIONS

Some projected changes from ensemble studies are
found to be relatively robust.f That is, though different
models and methods are used, similar predictions are
produced.18,48 For instance, all simulations produced
in a multimodel study might agree that mean
surface temperature in a region would increase by
more than 2◦C by the end of the 21st century
under a particular emission scenario. Or several
ensemble studies producing probabilistic projections
via different methods might agree that an increase
in global mean surface temperature of more than
1.5◦C over the next several decades is very unlikely,
regardless of the emission scenario considered.18

It is tempting to conclude that such robust pre-
dictions are particularly reliable or trustworthy. But
this is not necessarily the case. Members of an ensem-
ble might agree that a change in climate would not
exceed some threshold of interest, but they might
agree because all of the models fail to capture a sig-
nificant driver of the change, and it might even be
known that they fail to capture this driver. More-
over, if enough predictive variables and magnitudes of
change are considered, cases of agreement eventually
will be found, just as a matter of chance. It is robust-
ness in combination with additional information that
is significant, not robustness on its own.

For instance, suppose all ensemble members in a
multimodel study agree that summer precipitation in a
region would decrease over a particular period under
an emission scenario. Should scientists’ confidence
that a decrease would occur be substantially higher
after learning this result than it was before? It depends
on, among other things, whether it is significantly
more likely that the models all would get the sign
of the precipitation change right than that they all
would get it wrong.49 The problem is that, in many
cases, there is little basis for conclusions about such

likelihoods. While weather forecasting models (and
sets of such models) can build substantial track records
of performance, opportunities are much more limited
in the climate context, where predictions concern
longer-term changes under novel forcing conditions.
In principle, it might be argued on physical grounds
that a case of agreement is unlikely to be spurious—it
might be argued, for instance, that the processes that
will drive precipitation change in the region are well
known and well represented in the models—but in
practice these arguments are often out of reach.
(Moreover, if the individual models are thought to
be highly reliable, then agreement among their results
may not increase one’s confidence much beyond what
a single modeling result would do.)

A number of ensemble methods currently
in use do assign higher probabilities to changes
in climate as more and more members agree in
predicting those changes, in effect assuming that
model agreement is grounds for increased confidence.
Many of these methods either implicitly or explicitly
treat different models as independent sources of
information. In general, however, this assumption
appears unjustified, even in the case of multimodel
studies like CMIP3. The CMIP3 models were not all
developed independently—a single modeling center
might contribute several models that were built in a
similar way, even using some of the same code—and
biases in their performance have been found to be
correlated, especially for models developed at the
same centers; some analyses have suggested that the
two dozen or so CMIP3 models behave like a set of
only 5–10 statistically independent models. 50–54 How
to gauge and account for model dependence when
interpreting ensembles has not been resolved.34,52,55

Failing to account for it can lead to overconfidence
that particular changes in climate would occur.

Thus, while the intuition persists that agreement
among climate change projections warrants increased
confidence in the projected changes, the extent to
which this is the case is very often unclear.

SIGNIFICANCE IN POLITICAL
AND PUBLIC SPHERES

Efforts to develop and improve ensemble methods for
investigating uncertainty about future climate change
have steered climate science in new and valuable direc-
tions. Yet the ultimate motivation for these ensemble
studies is not a scientific one, but a practical one: pro-
viding policymakers and other decision makers with
information about the extent of current uncertainty
about future climate change, in order to facilitate
their decision making. As noted above, the largest
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multimodel studies conducted to date, CMIP3 and
CMIP5, have been undertaken expressly in support of
IPCC assessments. Likewise, the UKCP09 regional cli-
mate change projections, produced in the most sophis-
ticated perturbed-physics study conducted thus far,
are intended to support adaptation decisions across a
wide range of sectors in the United Kingdom.25

Given the aim of informing policy and other
decision making, however, there has been debate
about how ensembles—and especially conclusions
about uncertainty derived from them—should be
presented. Some have objected to the practice of
transforming ensembles into precise probabilistic
estimates of uncertainty.32,56 They worry that decision
makers will take these ‘estimated’ probabilities at face
value and, as a consequence, make poorer decisions
(relative to their own goals) than they would have
made had the second-order uncertainty associated
with these estimates been made more salient. Simply
offering a lower bound on uncertainty, that is, a
nondiscountable climate change envelope, garners
criticism for failing to convey to decision makers
whether some changes are more plausible/probable
than others.57 Imprecise probability specifications can
avoid both complaints but, insofar as expert judgment
plays a significant role in their production, they are
sometimes perceived as lacking in rigor; this concern
might be mitigated by making clearer the basis for the
judgments involved.

Beyond their roles in decision support, ensemble
studies of future climate change also are noteworthy
as sites of coordinated international participation in
climate science. In projects like CMIP5, modeling
groups around the world invest time and effort to
help address specific questions about future climate
change; they each contribute to the ensembles that
are produced.17 Likewise, the climateprediction.net
project has engaged tens of thousands of members
of the public, from dozens of countries, in
producing perturbed-physics simulations with their
home computers.22–24 In both cases, the ensembles
are community products, created with the help of
many parties who, through their participation, come
to have an additional stake in the findings.

FUTURE DIRECTIONS

Despite recent progress in developing and deploying
ensemble methodologies for investigating uncertainty
about future climate change, much work remains to
be done. Current research priorities include:

Structural uncertainty. More work is needed
on how to design ensemble studies to better take
account of structural uncertainty. Multimodel studies

explore structural uncertainty to a limited extent but,
as noted above, their results are more like a collection
of best guesses than a collection designed with the
goal of spanning or bounding uncertainty about
future climate change. Perturbed-physics studies often
ignore structural uncertainty. A recent exception was
the UKCP09 study, which accounted for structural
uncertainty in a preliminary way via a discrepancy
term.25,58

Weighting and metrics. Many ensemble studies
that assign probabilities to future changes in climate
already perform differential weighting of projections.
But questions remain about whether and how
such weighting should be done, especially for
multimodel studies like CMIP5.52,55,59 Which metrics
of performance60 are most relevant when evaluating
model quality for a given predictive purpose? When
is qualitative weighting—such as merely highlighting
a subset of projections—more appropriate than
quantitative weighting? These and related questions
merit further attention. At least one recent study
has demonstrated that improper weighting can easily
result in greater loss of skill than equal weighting.61

Knowledge synthesis. Taking a broader view,
very little attention has been given to the process
by which experts synthesize the results of ensemble
studies with other background knowledge (including
knowledge of the limitations of those ensemble
studies), in order to arrive at uncertainty estimates
that are based on all available information. It is worth
considering how this process could be structured to
minimize cognitive biases, such as double-counting,
anchoring, etc., as well as how it could be made more
transparent, so that uncertainty estimates are both
more accurate and more accountable.

NOTES
aA parameter is a constant term in an equation, whose
value is set by the modeler. An example would be
a parameter representing the rate at which air is
entrained from the environment in a particular kind
of cloud. Parameter values are held constant during a
simulation, even as the values of model variables (e.g.,
temperature, pressure, etc.) change from one time step
to the next.
bThis should be uncertainty about which set of
parameter values will give the most accurate
projections, for a specified measure of accuracy, not
uncertainty about the true values of the parameters.
The physical meaning of some parameters is unclear
and, for those that do have clear physical meaning, the
true values may not give the most accurate projections,
since the structure of the model is imperfect.32
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cI assume that climate is a distribution of weather con-
ditions, not the average of those conditions. Response
uncertainty—uncertainty about the change in climate
under a scenario—thus includes uncertainty due to
internal variability. Other authors62 distinguish inter-
nal variability from response uncertainty.
dThis is why simulations of future conditions often are
described as projections; they are predictions made
conditional on assumptions about future emissions
and other external forcings.
eIt is sometimes suggested that, if a system is chaotic,
then uncertainty about its future state is at least partly
ontic in character.63 Since chaos is deterministic, this
requires a definition of ontic uncertainty that includes

more than uncertainty due to indeterminism, though
exactly what else it should include is unclear, especially
if overlap between ontic and epistemic uncertainty
is to be avoided. Perhaps other ways of classifying
sources of uncertainty would be more useful here,
for example, reducible in practice vs. reducible in
principle vs. irreducible.
f There are several senses in which predictions can be
robust. Here, the focus is on robustness as mere agree-
ment in predictions from different models (or model
versions) available at a given point in time. Predic-
tions can also be robust in the sense that they do not
change much even as new generations of models are
developed or new information becomes available.
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